高等数学-空间解析几何与向量代数

1,向量的概念

1.1 一般在数学上只研究与起点无关的向量(自由向量),即只考虑向量的大小和方向。
1.2 向量的大小叫做向量的模。
1.3 非 零 向 量 r ⃗ 与 三 条 坐 标 轴 的 夹 角 α , β , γ 称 为 向 量 r ⃗ 的 方 向 角 。 非零向量\vec r与三条坐标轴的夹角\alpha,\beta,\gamma称为向量\vec r的方向角。 r α,β,γr
1.4 cos ⁡ α , cos ⁡ β , cos ⁡ γ 称 为 向 量 r ⃗ 的 方 向 余 弦 。 \cos\alpha,\cos\beta,\cos\gamma称为向量\vec r的方向余弦。 cosα,cosβ,cosγr
以 向 量 r ⃗ 的 方 向 余 弦 为 坐 标 的 向 量 就 是 与 r ⃗ 同 方 向 的 单 位 向 量 e ⃗ . 以向量\vec r的方向余弦为坐标的向量就是与\vec r同方向的单位向量\vec e. r r e .

2,基本运算

2.1 数量积(结果为一个数值)
a ⃗ × b ⃗ = ∣ a ⃗ ∣ × ∣ b ⃗ ∣ × cos ⁡ θ \vec a \times\vec b=|\vec a|\times|\vec b|\times\cos\theta a ×b =a ×b ×cosθ
2.2 向量积(结果为一个向量)
a ⃗ × b ⃗ = c ⃗ , \vec a \times\vec b=\vec c, a ×b =c
其中 c ⃗ 的 模 为 ∣ c ⃗ ∣ = ∣ a ⃗ ∣ × ∣ b ⃗ ∣ × sin ⁡ θ . \vec c的模为|\vec c|=|\vec a|\times|\vec b|\times\sin\theta. c c =a ×b ×sinθ.
方向判断方法如下:
在这里插入图片描述
向量积与数量积不同点在于它不满足交换律:
a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec a \times\vec b=-\vec b \times\vec a a ×b =b ×a .
(向量积除了不满足交换律,其它的性质和数量积一样,包括进行极限运算时。)
向量积可以写成行列式的形式:
a ⃗ = ( a x , a y , a z ) , b ⃗ = ( b x , b y , b z ) \vec a=(a_x,a_y,a_z), \vec b=(b_x,b_y,b_z) a =(ax,ay,az),b =(bx,by,bz),则

a ⃗ × b ⃗ = ∣ i ⃗ j ⃗ k ⃗ a x a y a z b x b y b z ∣ \vec a \times\vec b= \begin{vmatrix} \vec i&\vec j&\vec k \\ a_x&a_y&a_z \\ b_x&b_y&b_z \\ \end{vmatrix} a ×b =i axbxj aybyk azbz
2.3 混合积
先 把 向 量 a ⃗ 和 b ⃗ 作 向 量 积 , 再 与 向 量 c ⃗ 作 数 量 积 。 先把向量\vec a 和\vec b作向量积,再与向量\vec c作数量积。 a b c
[ a ⃗ b ⃗ c ⃗ ] = ( a ⃗ × b ⃗ ) c ⃗ = ∣ a x a y a z b x b y b z c x c y c z ∣ [\vec a\vec b\vec c]=(\vec a \times\vec b) \vec c= \begin{vmatrix} a_x&a_y&a_z \\ b_x&b_y&b_z \\ c_x&c_y&c_z \\ \end{vmatrix} [a b c ]=(a ×b )c =axbxcxaybycyazbzcz
混合积的几何意义: 它 是 这 样 一 个 数 , 它 的 绝 对 值 表 示 以 向 量 a ⃗ , b ⃗ , c ⃗ 为 棱 的 平 行 六 面 体 的 体 积 。 它是这样一个数,它的绝对值表示以向量\vec a,\vec b,\vec c为棱的平行六面体的体积。 a ,b ,c

3,曲面及其方程

3.1 在空间解析几何中,任何曲面都可以看做点的几何轨迹。在这样的意义下,如果曲面S与三元方程:
F(x,y,z)=0有下述关系:
(1),曲面S上任一点的坐标都满足方程(1);
(2),不在曲面S上的点的坐标都不满足方程(1);
那么,方程(1)就叫做曲面S的方程,而曲面S就叫做方程(1)的图形。

3.2 空间曲面的参数方程。
通常是含有两个参数的方程,形式如下:
{ x = x ( s , t ) , y = y ( s , t ) , z = z ( s , t ) . \begin{cases} x=x(s,t), \\ y=y(s,t), \\ z=z(s,t). \\ \end{cases} x=x(s,t),y=y(s,t),z=z(s,t).

4,平面及其方程

4.1 点法式方程
已 知 平 面 的 法 向 量 n ⃗ = ( A , B , C ) 和 平 面 上 一 点 M 0 ( x 0 , y 0 , z 0 ) , 则 平 面 的 方 程 为 已知平面的法向量\vec n=(A,B,C)和平面上一点M_0(x_0,y_0,z_0),则平面的方程为 n =(A,B,C)M0(x0,y0,z0)
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
4.2 一般方程
三元一次方程对应着一个平面:
A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

5,空间直线及其方程

5.1 一般方程
可以理解为两个平面相交得到的直线
{ A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0. \begin{cases} A_1x+B_1y+C_1z+D_1=0, \\ A_2x+B_2y+C_2z+D_2=0. \\ \end{cases} {A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0.
5.2 点向式方程(对称式方程)
已 知 直 线 的 方 向 向 量 s ⃗ = ( m , n , p ) 和 平 面 上 一 点 M 0 ( x 0 , y 0 , z 0 ) , 则 直 线 的 方 程 为 已知直线的方向向量\vec s=(m,n,p)和平面上一点M_0(x_0,y_0,z_0),则直线的方程为 线s =(m,n,p)M0(x0,y0,z0)线
x − x 0 m = y − y 0 n = z − z 0 p \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} mxx0=nyy0=pzz0(如果两向量平行,那么它们的各个坐标之比相等)。
5.3 参数方程
如果令 x − x 0 m = y − y 0 n = z − z 0 p = t \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t mxx0=nyy0=pzz0=t,则
{ x = x 0 + m t , y = y 0 + n t , z = z 0 + p t . \begin{cases} x=x_0+mt, \\ y=y_0+nt, \\ z=z_0+pt. \\ \end{cases} x=x0+mt,y=y0+nt,z=z0+pt.

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值