赋范线性空间1

赋范线性空间一

文章目录

  • 赋范线性空间一
    • 一、度量空间
      • 1.1 度量空间的定义
          • 【定义】定义度量所需满足的性质
      • 1.2 度量空间的收敛性和点集
          • 【定义】极限
          • 【定义】有界集、无界集
          • 【定义】开球
          • 【定义】利用开球描述有界集
          • 【定理】收敛序列必有界
          • 【定义】基本列(柯西列)
          • 【定义】开集、闭集
          • 【定理】开集、闭集的性质
          • 【定义】集合的闭包
          • 【定理】闭包的性质
          • 【定理】闭集是对极限运算封闭的集合
          • 【定义】稠密和可分
      • 1.3 度量空间的映射(函数)
          • 【定义】映射(函数)的连续性
          • 【定理】判断映射连续的性质
          • 【定义】等距映射
          • 【定义】压缩映射
          • 【定义】不动点
          • 【定理】不动点的唯一性
          • 【定义】紧集、紧空间
          • 【定理】紧集的性质

一、度量空间

1.1 度量空间的定义

类比实数域,我们需要建立起函数以发挥其作用。推广到度量空间中,在建立起函数前,函数的极限与连续等性质均需要距离(度量)才能描述,于是本节先明确【距离(度量)】的概念。

研究数量的连续性变化,需要 极限 的概念,于是将实数域的极限概念 推广到抽象的集合上。首先需要“距离”来刻画元素的接近程度,即 度量,度量的定义为:

d ( x , y ) = ( ξ 1 − η 1 ) 2 + ( ξ 2 − η 2 ) 2 d(x,y)=\sqrt{(\xi_1-\eta_1)^2+(\xi_2-\eta_2)^2} d(x,y)=(ξ1η1)2+(ξ2η2)2

也可定义为:

d ( x , y ) = ∣ ξ 1 − η 1 ∣ + ∣ ξ 2 − η 2 ∣ d(x,y)=\left| \xi_1-\eta_1 \right|+\left|\xi_2-\eta_2\right| d(x,y)=ξ1η1+ξ2η2

前者相当于两点间的直线距离,后者相当于一个只有纵横街道的街区的距离。距离相当于集合中的两个点向实数的映射。

因此根据问题的需要,距离的定义可以多种多样。不过距离也不可以随意定义,必须满足以下性质:

【定义】定义度量所需满足的性质

设 X 为一般非空集合,映射 d : X × X → R d:X\times X\to\R d:X×XR 1满足对任意 x , y , z ∈ X x,y,z\in X x,y,zX ,有:

  • 非负性: d ( x , y ) ≥ 0 d(x,y)\ge0 d(x,y)0,当且仅当 x = y x=y x=y 时取等号
  • 对称性: d ( x , y ) = d ( y , x ) d(x,y)=d(y,x) d(x,y)=d(y,x)
  • 三角不等式: d ( x , z ) ≤ d ( x , y ) + d ( y , z ) d(x,z)\le d(x,y)+d(y,z) d(x,z)d(x,y)+d(y,z)

1.2 度量空间的收敛性和点集

定义了【距离(度量)】之后便可以定义【极限】了;有了极限,便可以讨论【有界】与【无界】相关的概念,同时在这个过程中引入了【开球】;有界、无界明确之后,便可以讨论【开集】与【闭集】了,在这过程中额外引入了【闭包】的概念;最后引入【稠密】与【可分】的概念,为之后在度量空间之间建立【函数(映射)】能利用稠密可分的好性质做好铺垫。

有了度量,就可以考虑 收敛性 的问题了。从实数域的收敛性推广,得到如下定义。

类似实数域 极限 的定义,度量空间中2【极限】的定义为:

【定义】极限

( X , d ) (X,d) (X,d) 为一度量空间, { x n } ⊂ X \{ x_n \} \subset X {xn}X x ∈ X x\in X xX,如果对于任意给定的 ε > 0 \varepsilon>0 ε>0 ∃   N ∈ Z + \exist\ N\in \Z_+  NZ+,使得对一切 n > N n>N n>N ,都有 d ( x n , x ) < ε d(x_n,x)<\varepsilon d(xn,x)<ε,就称 { x n } \{ x_n \} {xn} 收敛到 x x x x x x 称为 { x n } \{ x_n \} {xn} 的极限,记为 lim ⁡ n → ∞ x n = x \lim_{n\to\infty} x_n=x limnxn=x,或 x n → x   ( n → ∞ ) x_n\to x\ (n\to\infty) xnx (n)

度量空间中2的【有界集】和【无界集】相关的定义:

【定义】有界集、无界集

( X , d ) (X,d) (X,d) 为度量空间, A , B ⊂ X A,B\subset X A,BX 为非空子集,

  • 【集合与集合的距离】:称 D ( A , B ) = inf ⁡ { d ( x , y )   ∣   x ∈ A , y ∈ B } D(A,B)=\inf\{ d(x,y)\ |\ x\in A,y\in B \} D(A,B)=inf{d(x,y)  xA,yB} 3为集合 A 与 B 的距离。
  • 【点到集合的距离】:称 D ( x 0 , A ) = inf ⁡ { d ( x 0 , y )   ∣   y ∈ A } D(x_0,A)=\inf\{ d(x_0,y)\ | \ y\in A \} D(x0,A)=inf{d(x0,y)  yA} 3 x 0 x_0 x0 到 A 的距离,简记为 D ( x 0 , A ) D(x_0,A) D(x0,A)
  • 【有界集与无界集】:称 r ( A ) = sup ⁡ { d ( x , y )   ∣   x , y ∈ A } r(A)=\sup\{ d(x,y)\ |\ x,y\in A\} r(A)=sup{d(x,y)  x,yA} 3为集合 A 的直径,当 r ( A ) < ∞ r(A)<\infty r(A)< 时,称 A 为有界集,否则称为无界集。

有了度量(距离),我们便可以从几何的观点来刻画,定义度量空间中的【开球】:

【定义】开球

B r ( x 0 ) = { x ∈ X   ∣   d ( x , x 0 ) < r } B_r(x_0)=\{ x\in X\ | \ d(x,x_0)<r \} Br(x0)={xX  d(x,x0)<r} ,指以 x 0 x_0 x0 为中心, r r r 为半径的开球

有了 开球 的定义,我们便可以通过开球从几何的观点描述 有界集

【定义】利用开球描述有界集

( X , d ) (X,d) (X,d) 为度量空间, A ⊂ X A\subset X AX

  • 若 A 有界, ∀   x 0 ∈ X ,   ∃   r > 0 \forall\ x_0\in X, \ \exist\ r>0  x0X,  r>0,使得 A ⊂ B r ( x 0 ) A\subset B_r(x_0) ABr(x0)4
  • ∃   x 0 ∈ X ,   r > 0 \exist\ x_0\in X, \ r>0  x0X, r>0,使得 A ⊂ B r ( x 0 ) A\subset B_r(x_0) ABr(x0) A 为有界集

有了极限与有界的定义之后,参考实数域 收敛序列必有界,推广到度量空间中亦成立,有如下定理:

【定理】收敛序列必有界

度量空间中,收敛序列为有界集。

在度量空间中,也有类似于实数域中 基本列 或称 柯西列(Cauchy列)5 的概念,

【定义】基本列(柯西列)

( X , d ) (X,d) (X,d) 为度量空间, { x 0 } ⊂ X \{x_0\}\subset X {x0}X

  • ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ N ∈ Z + \exist N\in \Z_+ NZ+ 使得 ∀ n , m > N \forall n,m>N n,m>N d ( x n , x m ) < ε d(x_n,x_m)<\varepsilon d(xn,xm)<ε,则称 { x 0 } \{x_0\} {x0} 是基本列
  • 如果 X X X 中的每个基本列都收敛于 X X X 中的点,则称 X X X 是完备的度量空间

研究度量空间中的点集,需要先建立度量空间中开集和闭集的概念。【开集】和【闭集】的 定义 如下:

【定义】开集、闭集

( X , d ) (X,d) (X,d) 为度量空间, A ⊂ X A\subset X AX

  • ∀ x ∈ A \forall x\in A xA ∃ B ε ( x ) ⊂ A \exist B_{\varepsilon}(x)\subset A Bε(x)A4,则称 x x x A A A 的内点
  • A A A 的每个点都是内点,则称 A A A开集
  • A C A^C AC 6为开集,则称 A A A闭集
  • 规定 ∅ \emptyset 是开集

显然 X X X 本身为开集,又规定了 ∅ \emptyset 为开集,所以 X X X ∅ \emptyset 又同时都为闭集。

闭集包含该集合内的所有极限点,而开集指集合中的每一个点都有一个邻域被完全包含在这个集合内。(在度量空间中,开集与闭集并不是互补互斥的)

度量空间中的开集、闭集有如下性质:

【定理】开集、闭集的性质
  • 任意个开集之并是开集
  • 任意个闭集之交是闭集
  • 有限个开集之交是开集
  • 有限个闭集之并是闭集
【定义】集合的闭包

A A A 为度量空间中的的非空子集, x ∈ X x\in X xX

  • x x x 满足 ∀ ε > 0 \forall \varepsilon>0 ε>0 A ∩ B ε ( x ) ≠ ∅ A\cap B_\varepsilon(x)\neq\emptyset ABε(x)=,就称 x x x A A A 的接触点
  • A A A 的接触点的全体称为 A A A闭包,记为 A ‾ \overline A A

A A A A ‾ \overline A A 的子集,比如 R \R R 中, A A A [ 0 , 1 ] [0,1] [0,1] 中所有的有理数,则其闭包 A ‾ = [ 0 , 1 ] \overline A=[0,1] A=[0,1]

【定理】闭包的性质

A , B A,B A,B 为度量空间 X X X 中的非空子集,则

  • A ‾ \overline A A 7是包含 A A A 的最小闭集(闭包一定为闭集)
  • A A A 是闭集当且仅当 A = A ‾ A=\overline A A=A
  • A ⊂ B A\subset B AB,则 A ‾ ⊂ B ‾ \overline A\subset\overline B AB
  • A ∪ B ‾ = A ‾ ∪ B ‾ \overline{A\cup B}=\overline A\cup \overline B AB=AB
  • x ∈ A ‾ x\in \overline A xA 当且仅当 D ( x , A ) = 0 D(x,A)=0 D(x,A)=08
【定理】闭集是对极限运算封闭的集合

A A A 为度量空间 X X X 中的非空子集,

  • x ∈ A ‾ x\in \overline A xA 当且仅当存在序列 { x n } ⊂ A \{x_n\}\subset A {xn}A 使得 lim ⁡ n → ∞ x n = x \lim_{n\to\infty}x_n=x limnxn=x
  • A A A 为闭集当且仅当 ∀ { x n } ⊂ A \forall\{x_n\}\subset A {xn}A lim ⁡ n → ∞ x n = x ∈ X \lim_{n\to\infty}x_n=x\in X limnxn=xX,则 x ∈ A x\in A xA
【定义】稠密和可分

A , B A,B A,B 为度量空间 X X X 中的子集,

  • B ⊂ A ‾ B\subset\overline A BA ,就称 A A A B B B 中稠密
  • 若一个可数集 A A A X X X 中稠密,则称 X X X 是可分的

比如 Q \mathbb Q Q R \R R 中是稠密的,而 Q \mathbb Q Q 是可数集,所有 R \R R 是可分的

可分空间在映射的过程中有很多好的性质可以利用,在后面会进行展示

1.3 度量空间的映射(函数)

建立映射(函数)的首要性质是【连续性】,依托连续性,有几个特殊的映射分别是【等距映射】与【压缩映射】,其中压缩映射在压缩的过程中存在【不动点】。实数域中闭区间中的连续函数具有一些有用的性质,推广到一般度量空间中就是【紧集】上的连续映射。

度量空间可以像实数集一样,定义其上连续映射(函数)

【定义】映射(函数)的连续性

( X , d ) , ( Y , ρ ) (X,d),(Y,\rho) (X,d),(Y,ρ) 是两个度量空间, f : X → Y f:X\to Y f:XY 是映射, x 0 ∈ X x_0\in X x0X

  • ∀ ε > 0 \forall\varepsilon>0 ε>0 ∃ δ > 0 \exist\delta>0 δ>0,使得一切满足 d ( x , x 0 ) < δ d(x,x_0)<\delta d(x,x0)<δ x ∈ X x\in X xX,有 ρ ( f ( x ) , f ( x 0 ) ) < ε \rho(f(x),f(x_0))<\varepsilon ρ(f(x),f(x0))<ε,就称映射 f f f x 0 ∈ X x_0\in X x0X连续;(类似函数在某一点上连续的定义)
  • 如果 f f f X X X 每一点上连续,就称映射 f f f X X X 上连续,或称 f f f 是连续的。(类似函数连续的定义)
【定理】判断映射连续的性质

( X , d ) , ( Y , ρ ) (X,d),(Y,\rho) (X,d),(Y,ρ) 是两个度量空间, f : X → Y f:X\to Y f:XY 是映射,则如下命题等价

  • f f f 是连续映射
  • 对于 Y Y Y 中任意开集 G G G f − 1 ( G ) f^{-1}(G) f1(G) X X X 中的开集
  • 对于 Y Y Y 中任意闭集 G G G f − 1 ( G ) f^{-1}(G) f1(G) X X X 中的闭集
  • 对于 X X X 中任意序列 { x n } \{x_n\} {xn},若 d ( x n , x ) → 0 d(x_n,x)\to0 d(xn,x)0,则 ρ ( f ( x n ) , f ( x ) ) → 0 \rho(f(x_n),f(x))\to0 ρ(f(xn),f(x))0

一类特殊的映射——【等距映射】

【定义】等距映射

( X , d ) , ( Y , ρ ) (X,d),(Y,\rho) (X,d),(Y,ρ) 是两个度量空间

  • f : X → Y f:X\to Y f:XY 是双射,且 ∀ x , y ∈ X \forall x,y\in X x,yX,有 d ( x , y ) = ρ ( f ( x ) , f ( y ) ) d(x,y)=\rho(f(x),f(y)) d(x,y)=ρ(f(x),f(y)),则称 f f f等距映射
  • ∃ f : X → Y \exist f: X\to Y f:XY 是等距映射 ,则称 X , Y X,Y X,Y等距

有了【连续映射】的概念之后,可以引出来一个很有用的映射——【压缩映射】

【定义】压缩映射

( X , d ) (X,d) (X,d) 为度量空间, f : X → X f:X\to X f:XX 是一映射

  • 若存在 0 ≤ α < 1 0\leq \alpha<1 0α<1,使得 ∀ x , y ∈ X \forall x,y\in X x,yX,有 d ( f x , f y ) ≤ α d ( x , y ) d(fx,fy)\leq\alpha d(x,y) d(fx,fy)αd(x,y),则称 f f f X X X 上的一个压缩映射

压缩映射相当于将集合映射在该集合的一个子集内

压缩映射显然是连续映射

在压缩映射中,有一个【不动点】的概念

【定义】不动点

( X , d ) (X,d) (X,d) 为度量空间, f : X → X f:X\to X f:XX 是一映射

  • x ∗ ∈ X x^*\in X xX 使 f x ∗ = x ∗ fx^*=x^* fx=x,则称 x ∗ x^* x 是映射 f f f不动点
【定理】不动点的唯一性

( X , d ) (X,d) (X,d)完备度量空间 f : X → X f:X\to X f:XX 是压缩映射

  • f f f唯一不动点
【定义】紧集、紧空间

( X , d ) (X,d) (X,d) 为度量空间, A ⊂ X A\subset X AX

  1. A A A 中任意收敛序列 { x n } \{x_n\} {xn} 均有收敛子序列 { x n k } \{x_{{n}_k}\} {xnk},使得 $\lim_{k\to\infty} x_{{n}_k}=x\in A $,则称 A A A紧集

  2. 在 1 的基础上,若 X X X 本身为紧集,则称 X X X紧空间

依据紧集的定义,可以知道紧集是闭集。

R n \R^n Rn 中,有界闭集等同于紧集,但在一般的度量空间中,两者并不等价。

【定理】紧集的性质

( X , d ) , ( Y , ρ ) (X,d),(Y,\rho) (X,d),(Y,ρ) 是两个度量空间, A ⊂ X A\subset X AX为紧集,若 f : A → Y f:A\to Y f:AY 是连续的,则 f ( A ) f(A) f(A) 也是紧集

A A A 是度量空间 X X X 中的紧集, f f f A A A 上的连续函数,即 f : A → R f:A\to\R f:AR,则 f f f A A A 上有界,且能取到最大值、最小值



  1. 这里的 × \times × 是【直积】,又称【Descartes 乘积】。定义:设 A,B 为集合,其直积记为 A × B A\times B A×B ,定义为 A,B中元素按照 A 先 B 后的顺序构成有序对 ( a , b ) (a,b) (a,b) 的全体所构成的集合,即: A × B = { ( a , b )   ∣   a ∈ A ,   b ∈ B } A\times B=\left\{ (a,b)\ |\ a\in A,\ b\in B \right\} A×B={(a,b)  aA, bB}↩︎

  2. 即推广到一般的集合中,而不是实数域。 ↩︎ ↩︎

  3. sup E 称为数集 E 的上确界(supremum),inf E 称为数集 E 的下确界(infimum)。 ↩︎ ↩︎ ↩︎ ↩︎

  4. B r ( x 0 ) = { x ∈ X   ∣   d ( x , x 0 ) < r } B_r(x_0)=\{ x\in X\ | \ d(x,x_0)<r \} Br(x0)={xX  d(x,x0)<r} ,指以 x 0 x_0 x0 为中心, r r r 为半径的开球 ↩︎ ↩︎

  5. 在数学中,一个柯西序列是指一个这样一个序列,它的元素随着序数的增加而愈发靠近。更确切地说,在去掉有限个元素后,可以使得余下的元素中任何两点间的距离的最大值不超过任意给定的正的常数。 ↩︎

  6. A C A^C AC 表示 A A A C C C 上的补集 ↩︎

  7. A ‾ \overline A A 表示 A A A 的闭包。 ↩︎

  8. 【点到集合的距离】:称 D ( x 0 , A ) = inf ⁡ { d ( x 0 , y )   ∣   y ∈ A } D(x_0,A)=\inf\{ d(x_0,y)\ | \ y\in A \} D(x0,A)=inf{d(x0,y)  yA} 3 x 0 x_0 x0 到 A 的距离,简记为 D ( x 0 , A ) D(x_0,A) D(x0,A)↩︎

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值