赋范线性空间2

赋范线性空间二

二、赋范线性空间

2.1 赋范线性空间的定义

  1. 一般的集合可以通过定义不同的度量而称为度量空间,但实际应用中希望能定义出具有更多优良性的度量。
  2. 线性空间是赋予了线性运算的集合

由此可以借助在线性空间上定义度量以获得线性性

  • 线性空间只要定义了“长度”就可以定义度量,向量长度推广到一般线性空间就是【范数】

赋予了范数的线性空间即【赋范线性空间】

【定义】范数、赋范线性空间

X X X 是数域 F F F 上的线性空间,如果映射 ∥ ⋅ ∥ : X → R \|\cdot\|:X\to \R :XR 满足:对一切 x , y ∈ X , α ∈ F x,y\in X,\alpha\in F x,yX,αF,有

  • 非负性: ∥ x ∥ ≥ 0 \|x\|\geq0 x0 ∥ x ∥ = 0 \|x\|=0 x=0 当且仅当 x = 0 x=0 x=0
  • 齐次性: ∥ α x ∥ = ∣ α ∣ ∥ x ∥ \|\alpha x\|=|\alpha|\|x\| αx=α∣∥x
  • 三角不等式: ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \|x+y\|\leq\|x\|+\|y\| x+yx+y

则称映射 ∥ ⋅ ∥ \|\cdot\| X X X 上的范数, ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 称为赋范线性空间,简记为 X X X

需要满足的条件类似于度量,只是变为了在线性空间里,模长(范数)的关系

将向量长度推广到线性空间得到范数之后,需要通过范数明确度量的含义,即有了范数诱导的度量。

【定义】范数诱导的度量

( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 为赋范线性空间,对于 ∀ x , y ∈ X \forall x,y\in X x,yX,令

  • d ( x , y ) = ∥ x − y ∥ d(x,y)=\|x-y\| d(x,y)=xy

d ( ⋅ , ⋅ ) d(\cdot,\cdot) d(,) 为由范数诱导的度量

【定理】范数加法、数乘都为连续映射

X X X 为赋范线性空间,则范数 ∥ ⋅ ∥ : X → R \|\cdot\|:X\to\R :XR,加法: X × X → X X\times X\to X X×XX1,数乘: F × X → X F\times X\to X F×XX 都是连续映射

2.2 Banach 空间

【定义】Banach 空间

在实数域里,数列收敛当且仅当它是柯西列2

而对于一般赋范线性空间 X X X,若 { x n } \{x_n\} {xn} 收敛到 x ∈ X x\in X xX,则它必是柯西列。但反过来若 { x n } \{x_n\} {xn} X X X 中的柯西列,它未必在 X X X 中收敛。

完备的赋范线性空间3称为 Banach空间

典型的Banach空间: R n \R^n Rn C n \mathbb{C}^n Cn l p l^p lp 1 ≤ p < ∞ 1\leq p<\infty 1p<

【定义】收敛、绝对收敛

X X X 为赋范线性空间,对每个 n ∈ Z n\in\mathbb{Z} nZ,令 s n = ∑ i = 1 ∞ x i s_n=\sum_{i=1}^{\infty}x_i sn=i=1xi

  • { s n } \{s_n\} {sn} 收敛于 X X X,则称 { x n } \{x_n\} {xn} 收敛
  • 若级数 ∑ i = 1 ∞ ∥ x i ∥ \sum_{i=1}^{\infty}\|x_i\| i=1xi 收敛,则称 ∑ i = 1 ∞ x i \sum_{i=1}^{\infty}x_i i=1xi 绝对收敛

在实数域中,绝对收敛 → \to 收敛。但是在一般的赋范线性空间中,未必成立

【定理】绝对收敛的可推出收敛的条件

赋范线性空间中每个绝对收敛的级数都收敛 当且仅当 是完备赋范线性空间

【定理】赋范线性空间/度量空间 完备化定理

任何赋范线性空间 X X X 都可以嵌入到一个Banach空间4 X ^ \hat X X^ 中,即 X X X X ^ \hat X X^ 的一个子空间 X 0 X_0 X0 等距线性同构5(若是一般度量空间只要求等距),且 X 0 X_0 X0 X ^ \hat X X^ 中稠密567

【定理】Weierstrass定理

x ∈ C [ a , b ] x\in C[a,b] xC[a,b],则对于 ∀ ε > 0 \forall\varepsilon>0 ε>0,存在一个多项式 f ∈ P [ a , b ] f\in P[a,b] fP[a,b] 使得 ∥ x − f ∥ ∞ < ε \|x-f\|_{\infty}<\varepsilon xf<ε



  1. 【直积】这里的 × \times × 是【直积】,又称【Descartes 乘积】。定义:设 A,B 为集合,其直积记为 A × B A\times B A×B ,定义为 A,B中元素按照 A 先 B 后的顺序构成有序对 ( a , b ) (a,b) (a,b) 的全体所构成的集合,即: A × B = { ( a , b )   ∣   a ∈ A ,   b ∈ B } A\times B=\left\{ (a,b)\ |\ a\in A,\ b\in B \right\} A×B={(a,b)  aA, bB} ↩︎

  2. 【柯西列】在数学中,一个柯西序列是指一个这样一个序列,它的元素随着序数的增加而愈发靠近。更确切地说,在去掉有限个元素后,可以使得余下的元素中任何两点间的距离的最大值不超过任意给定的正的常数。 ↩ ↩︎

  3. 【完备度量空间】如果 X X X 中的每个基本列都收敛于 X X X 中的点,则称 X X X 是完备的度量空间 ↩︎ ↩︎

  4. 【Banach空间】完备的赋范线性空间3称为 Banach空间 ↩︎

  5. 【稠密】设 A , B A,B A,B 为度量空间 X X X 中的子集,若 B ⊂ A ‾ B\subset\overline A BA 8,就称 A A A B B B 中稠密 ↩︎ ↩︎

  6. 【等距】:设 ( X , d ) , ( Y , ρ ) (X,d),(Y,\rho) (X,d),(Y,ρ) 是两个度量空间,若 f : X → Y f:X\to Y f:XY 是双射,且 ∀ x , y ∈ X \forall x,y\in X x,yX,有 d ( x , y ) = ρ ( f ( x ) , f ( y ) ) d(x,y)=\rho(f(x),f(y)) d(x,y)=ρ(f(x),f(y)),则称 f f f等距映射,若 ∃ f : X → Y \exist f: X\to Y f:XY 是等距映射 ,则称 X , Y X,Y X,Y等距的。 ↩︎

  7. 【线性同构】:设 X , Y X,Y X,Y 是线性空间,则映射 T : X → Y T:X\to Y T:XY 称为一个线性同构。 ↩︎

  8. 【闭包的符号表示】 A ‾ \overline A A 表示 A A A 的闭包 ↩︎

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值