泛函分析笔记05:赋范空间的基本概念

第二章:赋范空间

2.1基本概念

定义 3.1(赋范空间): 设 K = R \mathbb{K}=\mathbb{R} K=R C , X \mathbb{C}, X C,X K \mathbb{K} K 上的线性空间, ∥ ⋅ ∥ \|\cdot\| X X X 上的实函数, 满足:
(1) ∥ x ∥ ≥ 0 \|x\| \geq 0 x0; 且 ∥ x ∥ = 0 ⟺ x = θ \|x\|=0 \Longleftrightarrow x=\theta x=0x=θ; ( θ \theta θ X X X 的零元)
(2) ∥ α x ∥ = ∣ α ∣ ∥ x ∥ , ∀ α ∈ K , ∀ x ∈ X ; \|\alpha x\|=|\alpha|\|x\|, \quad \forall \alpha \in \mathbb{K}, \forall x \in X ; αx=αx,αK,xX; (绝对齐性)
(3) ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ , ∀ x , y ∈ X \|x+y\| \leq\|x\|+\|y\|, \quad \forall x, y \in X x+yx+y,x,yX; (次可加性或三角 不等式)
则称 ∥ ⋅ ∥ \|\cdot\| X X X 上的一个范数, 称 ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 为赋范空间。

注1:其中非负性可去。

注2:在赋范空间 ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 中,定义
d ( x , y ) = ∥ x − y ∥ , ∀ x , y ∈ X d(x, y)=\|x-y\|, \quad \forall x, y \in X d(x,y)=xy,x,yX
( X , d ) (X, d) (X,d) 是一个距离空间 (称 d d d 为由范数 ∥ ⋅ ∥ \|\cdot\| 产生的距离 ) ) )。由此可在赋范空间中引入收敛性、完备性、开闭集、稠密性、可分性、紧性列紧性等等概念。

定义3.2(Banach空间):当 ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 完备时, 称 X X X 为 Banach 空间, 或 ( B ) (B) (B) 空间。

定理 3.3:在赋范空间 ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 中,

  • ∥ x ∥ \|x\| x X X X 上 连续;
  • 加法和数乘是连续的。

注:由次加性可得超减性,进而得到$ |x|$一致连续;加法和数乘的连续性根据定义由数分中的技巧可得。

定理 3.4:赋范空间 ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 完备 ⟺ ∀ { x n } n = 1 ∞ ⊆ \Longleftrightarrow \forall\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq {xn}n=1 X X X, 当 ∑ n = 1 ∞ ∥ x n ∥ < ∞ \sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty n=1xn< 时总有 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_{n} n=1xn 收敛。

赋范空间的完备性可理解为:由范数收敛可以得到原级数收敛;可看作数分中绝对收敛一定收敛的推广。

定义3.5(凸集):设 ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 为赋范空间, x , y ∈ X x, y \in X x,yX, 称 [ x , y ] = { α x + [x, y]=\{\alpha x+ [x,y]={αx+ ( 1 − α ) y : α ∈ [ 0 , 1 ] } (1-\alpha) y: \alpha \in[0,1]\} (1α)y:α[0,1]} 为连接 x x x y y y 的线段; 对于 X X X 中的子 集 A A A, 如果对任意 x , y ∈ A x, y \in A x,yA 都有 [ x , y ] ⊆ A [x, y] \subseteq A [x,y]A, 则称 A A A 为凸 集。

例:赋范空间中的开球 S ( x 0 , r ) S\left(x_{0}, r\right) S(x0,r) 和闭球 B ( x 0 , r ) B\left(x_{0}, r\right) B(x0,r) 都是凸集;但距离空间中的开球 S ( x 0 , r ) S\left(x_{0}, r\right) S(x0,r) 和闭球 B ( x 0 , r ) B\left(x_{0}, r\right) B(x0,r) 不一定是凸集。

定义3.6(子空间):设 ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 为赋范空间, 如果 X 0 X_{0} X0 X X X 的一 个线性子空间, 则 ( X 0 , ∥ ⋅ ∥ ) \left(X_{0},\|\cdot\|\right) (X0,) 也是一个赋范空间, 称之 为 ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) 的(赋范)子空间。

Banach空间的闭子空间也是Banach空间。

定义3.7(线性算子):设 X , Y X, Y X,Y 为赋范空间, 如果映射 T : X → T: X \rightarrow T:X Y Y Y 满足可加性: T ( x + y ) = T x + T y , ∀ x , y ∈ X T(x+y)=T x+T y, \forall x, y \in X T(x+y)=Tx+Ty,x,yX和齐性: T ( k x ) = k T x , ∀ k ∈ K , x ∈ X T(k x)=k T x, \forall k \in \mathbb{K}, x \in X T(kx)=kTx,kK,xX
则称 T T T 是线性的(等价于 T ( a x + b y ) = a T x + b T y , ∀ a , b ∈ T(a x+b y)=a T x+b T y, \quad \forall a, b \in T(ax+by)=aTx+bTy,a,b K , x , y ∈ X \mathbb{K}, x, y \in X K,x,yX ) 。

  • 如果 T T T 还满足: ∥ T x ∥ = ∥ x ∥ , ∀ x ∈ X \|T x\|=\|x\|, \forall x \in X Tx=x,xX则称 T T T 为线性等距(算子), 此时称 X X X 可等距嵌入 Y Y Y;

  • 如果 T T T 是满的线性等距, 则称 T T T 为等价映射, 此时称 X X X Y Y Y 等价,记为 X ≅ Y X \cong Y XY

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值