Joint Learning for Aspect Category Detection and Sentiment Analysis in Chinese Reviews(2019)

第一遍

标题以及作者

在这里插入图片描述

Joint Learning for Aspect Category Detection and Sentiment Analysis in Chinese Reviews

摘要

ACSA主要集中于方面词类别检测(Aspect category detection)和方面词情感极性识别(Aspect category polarity identify),以往的方法大多采用流水线的形式,分别实现两个子任务。本文采用一种端到端的联合学习方式完成ACSA,实验表明本文方法比基线模型更加简单有效。

结论

  1. 本文使用CNN结构学习字符级表示,并将其与预训练词向量结合,作为最终的词级别表示。
  2. 使用highway网络修改输入向量,使其更利于网络的训练。(残差结构?
  3. 在词表示基础上,使用另一种CNN结构学习句子表示,使用平均池化和最大池化来获取最后的句子表示,该句子表示最终输入到表示不同类别的不同分类器中。
  4. 展望:利用句法树与词法特征捕捉方面词和情感词之间的关系,并与神经网络融合,进一步提高模型的性能。

1 介绍

ABSA
ATSA
ACSA
ATE
ATSC
ACD
ACSC
  1. 当使用流水线策略时,模型的错误从上游任务转移到下游任务,导致错误的累加。

本文主要贡献:

  1. 本文的联合学习模型使用一个共享的编码层和一个独立层解决ACSA任务。编码层用来学习识别不同方面类别共享的句子表示,独立层用来修正不同方面类别的共享句子表示。
  2. 本文模型在一个中文评论数据集上进行对比试验,本文模型优于使用复杂结构和大规模参数的基线模型,显示了本文模型的简单性有效性

2 相关工作

ACSA之前的工作主要可以分为两类:1. 基于特征的方法,通常使用手工特征,例如:n-gram和字典特征,然后为每个方面类别训练一系列one-vs-all分类器。 2. 基于神经网络的方法

第二遍

3 我们的模型

3.1 模型架构

在这里插入图片描述

下方的虚线框中参数是共享的,为了识别不同的方面类别而生成句子表示;上方的虚线框中参数是各自独立的,根据生成的相同的句子表示进行方面类别的情感极性分类。

3.2 字符级别表示和词级别表示

处理流程:

  1. 输入评论句子 S = w 1 , w 2 , . . . , w n S = {w_1, w_2, ...,w_n} S=w1,w2,...,wn,n表示句子单词个数
  2. 每个词可以被表达为一个稠密向量,但是有超过24%的词语OOV,其中一些词语是情感词;因此,本文采用CNN去学习字符级别表示来消除这种影响
  3. 模型框架如下:

在这里插入图片描述

框架详解:

  1. 本文将一个句子序列分解成字符序列,例如:“这个车性价比很高”,被划分为5个字符序列,字符序列是随机初始化的,字符序列最大长度为10,每个字符用向量 c i c_i ci 表示。

  2. 卷积操作是在不同的字符向量 c i c_i ci间进行,卷积公式如下:
    z i = f ( W ⋅ c i : c i + k + b ) z_{i}=f\left(W \cdot c_{i}: c_{i+k}+b\right) zi=f(Wci:ci+k+b)

  3. 最大池化操作,在特征维度降维,生成一个字符序列向量。

3.3 Highway Network 和 句子级别表示

Note:Highway network表示网络中的信息没有任何阻碍的经过网络中的所有层。

highway block:
x dense  = tanh ⁡ ( W 1 x + b 1 ) x gate  = sigmoid ⁡ ( W 2 x + b 2 ) x highway  = x dense  ∗ x gate  + ( 1 − x gate  ) ∗ x \begin{gathered} x_{\text {dense }}=\tanh \left(W_{1} x+b_{1}\right) \\ x_{\text {gate }}=\operatorname{sigmoid}\left(W_{2} x+b_{2}\right) \\ x_{\text {highway }}=x_{\text {dense }} * x_{\text {gate }}+\left(1-x_{\text {gate }}\right) * x \end{gathered} xdense =tanh(W1x+b1)xgate =sigmoid(W2x+b2)xhighway =xdense xgate +(1xgate )x
在highway block顶部使用另一个CNN学习句子表示(本文认为方面词和观点词距离较近,使用卷积操作更加合适),卷积操作之后分别最大池化和平均池化,并将最后结果concatenate得到最终的句子级别表示 S S S

3.4 联合学习

将得到的句子表示 S S S 分别送入不同的分类器中
S ∗ = ( W i s S + b i s ) q i ( x ) = softmax ⁡ ( W i S ∗ S ∗ + b i S ∗ ) \begin{gathered} S^{*}=\left(W_{i}^{s} S+b_{i}^{s}\right) \\ q_{i}(x)=\operatorname{softmax}\left(W_{i}^{S^{*}} S^{*}+b_{i}^{S^{*}}\right) \end{gathered} S=(WisS+bis)qi(x)=softmax(WiSS+biS)
L o s s i Loss_i Lossi表示每个子任务的损失
Loss ⁡ i = − ∑ j = 1 N p i ( x ) log ⁡ ( q i ( x ) ) \operatorname{Loss}_{i}=-\sum_{j=1}^{N} p_{i}(x) \log \left(q_{i}(x)\right) Lossi=j=1Npi(x)log(qi(x))
总损失根据各损失加权得到,权值根据训练过程发生变化
Loss ⁡ = ∑ i = 1 n α i L o s s i \operatorname{Loss}=\sum_{i=1}^{n} \alpha_iLoss_i Loss=i=1nαiLossi

4 实验结果和分析

4.1 数据集

2018 CCF大数据与计算智能大赛

4.2 实验设置

在这里插入图片描述

4.3 评估指标

定义任务对:某个方面类别的ACD成功+ACSA成功

TP:完成评论中所有任务对

FP:任意任务对失败

FN:预测任务对数量少了

FP:预测任务对数量多了
P = T p T p + F p , R = T p T p + F n , F 1 = 2 P R P + R P=\frac{T_{p}}{T_{p}+F_{p}}, R=\frac{T_{p}}{T_{p}+F_{n}}, F 1=\frac{2 P R}{P+R} P=Tp+FpTp,R=Tp+FnTp,F1=P+R2PR

4.5 实验结果和分析

4.5.1 与基线模型结果比较

在这里插入图片描述

4.5.2 字符级别表示有效性

去除CNN-字符表示层,进行对比实验,实验表示加入字符表示结果在开发集上提升1.76%

4.5.3 词嵌入影响分析

在这里插入图片描述

第三遍

小结:

  1. 本文2019年的论文,本文首次提出了ACSA任务的联合学习模型,不仅使用了预训练模型生成的词向量,同时为了克服OOV问题,也使用了字符序列表示,融合词向量和字符序列表示生成句子表示,然后使用多任务学习的方法,根据相同的句子表示进行方面词类别抽取和方面词情感极性判断。
  2. 本文主要使用的网络结构有:CNN、最大池化、平均池化、Highway Network、以及一些正则化操作。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
情感分析是一种通过计算机程序对文本中的情绪进行分析的技术。方面的使用生成对比学习方法。生成对比学习是一种通过比较两个不同视角的数据来提高模型性能的方法。在这种情感分析中,我们可以使用生成方法来自动提取文本中的情感方面,并结合对比学习方法来提高模型的性能。通过这种方法,我们可以更准确地识别文本中不同方面的情感,并且能够更好地区分出正面和负面情绪。 在这个过程中,我们首先使用生成模型来自动提取文本中的情感方面,然后结合对比学习方法来进行训练,以提高模型对情感方面的识别能力。这种方法可以帮助我们更准确地理解文本中的情感内容,并且能够更好地适应不同类型文本的情感分析任务。 此外,我们还可以使用这种方法来进行情感方面的生成,并结合对比学习方法来训练模型,使得生成的情感方面能够更接近真实的情感内容。通过这种方法,我们可以生成更加准确和自然的情感内容,并且能够更好地适应不同类型的情感生成任务。 综上所述,generative aspect-based sentiment analysis with contrastive learning and exp的方法可以帮助我们更准确地识别和生成文本中的情感内容,并且能够更好地适应不同类型文本的情感分析和生成任务。这种方法在自然语言处理领域具有广阔的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值