Python Flask 数据可视化

本文介绍了如何使用Python的Flask框架结合Echarts进行数据可视化。主要内容包括pyecharts的简介、图表类、全局配置、系列配置的设置,以及pyecharts在Flask中的集成方法,如模板渲染、前后分离、定时全量更新和增量数据更新。此外,还讲解了如何利用pyecharts生成图表图片。
摘要由CSDN通过智能技术生成

数据可视化是数据处理中的重要部分,前面我们了解了 Flask 的开发和部署,如何用 Flask 做数据可视化呢?今天我们来了解一下。

Python 语言极富表达力,并且拥有众多的数据分析库和框架,是数据分析的首选;

echarts,最初由百度团队开发,现在已独立成 Apache 旗下一款国际化产品,是基于 Web 的数据可视化框架,API 简单明了,应用极为广泛;

Python 和 echarts 的完美结合就是 pyecharts

pyecharts 简介

pyecharts 使得可以用 Python 语言,完成 echarts 中对图表的各种操作,并且让编写代码更便利

pyecharts 中的概念和 echarts 是相通的,对于刚接触的同学,无论从 pyecharts 还是 echarts 开始了解都可以

图表类

pyecharts 中的图表都是类,都继承自 Base 基类,构造函数接受一个 init_opts 参数,用于设置图表的属性

以下是常用 API 接口:

  • add_js_func:将 js 脚本附加在图表 Html 中

  • set_global_opts:设置图表属性

  • render:渲染出图表的 Html 文件

  • dump_options_with_quotes:将图表所有设置导出为 json,用于前后分离

全局配置

pyecharts 将图表中和数据无关的属性,集中在全局配置中,也就是这些配置是服务于整个图表的,比如 标题、图例、工具栏、数据提示框、区域缩放等,每种配置项,都是一个 BasicOpts的子类,通过图标对象的 set_global_opts 方法设置,例如:​​​​​​

from pyecharts.charts import Bar
bar = Bar()bar.set_global_opts(    title_opts=opts.TitleOpts(        title="Bar-基本示例",        subtitle="我是副标题",        pos_left= "center",        pos_top="top"),    legend_opts=opts.LegendOpts(        pos_top="60"))

系列配置

系列(series)是很常见的名词。在 echarts 里,系列(series)是指:一组数值以及他们映射成的图。“系列”这个词原本可能来源于“一系列的数据”,而在 echarts 中取其扩展的概念,不仅表示数据,也表示数据映射成的图。所以,一个 系列 包含的要素至少有:一组数值、图表类型(series.type)、以及其他的关于这些数据如何映射成图的参数。

pyecharts 系列配置 和 全局配置 类似,用于对图表中 系列 进行设置,比如设置 系列 样式、坐标系、颜色、形状、特殊点,以及等。

例如,柱状图上不显示标签:

from pyecharts.charts import Bar
bar = Bar()bar.set_series_opts(label_opts=opts
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值