十个Python图像处理工具,不可不知!

本文介绍了10个常用的Python图像处理库,包括scikit-image、NumPy、SciPy、PIL/Pillow、OpenCV-Python、SimpleCV、Mahotas、SimpleITK、pgmagick和Pycairo。这些库提供了丰富的功能,如图像过滤、基本操作、分割、分类、恢复、识别等,适合不同的图像处理需求。
摘要由CSDN通过智能技术生成

这些Python库提供了一种简单直观的方法来转换图像并理解底层数据。

今天的世界充满了数据,图像是这些数据的重要组成部分。但是,在使用它们之前,必须对这些数字图像进行处理 - 分析和操作,以提高其质量或提取一些可以使用的信息。

常见的图像处理任务包括显示;基本操作如裁剪,翻转,旋转等;;图像分割,分类和特征提取;图像恢复;图像识别。Python是这些图像处理任务的绝佳选择,因为它作为一种科学编程语言日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具。

本文着眼于10个最常用的Python库,用于图像处理任务。这些库提供了一种简单直观的方法来转换图像并理解底层数据。

1. scikit-image

scikit-image是一个与NumPy数组一起使用的开源Python包。它实现了用于研究,教育和行业应用的算法和实用程序。它是一个相当简单直接的库,即使对那些不熟悉Python生态系统的人也是如此。代码质量高,经过同行评审,由一个活跃的志愿者社区编写。

资源

scikit-image文档丰富,有很多示例和实际使用方法。

用法

该包通过skimage导入,大多数功能可以在子模块中找到。

图像过滤:

使用match_template函数进行模板匹配:

你可以在gallery中找到更多的例子。

2. NumPy

NumPy是Python编程中的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准NumPy数组。因此,通过使用基本的NumPy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值