Exponential decay is the decrease in a quantity N according to the law
N
(
t
)
=
N
0
e
−
λ
t
,
(
1
)
N(t)=N_{0}e^{-\lambda t} , (1)
N(t)=N0e−λt,(1)
for a parameter t and constant lambda (known as the decay constant), where
e
x
e^{x}
ex is the exponential function and N_{0}=N(0) is the initial value. Exponential decay is common in physical processes such as radioactive decay, cooling in a draft (i.e., by forced convection), and so on. Exponential decay is described by the first-order ordinary differential equation
d
N
d
t
=
−
λ
N
,
(
2
)
\frac{dN}{dt}=-\lambda N, (2)
dtdN=−λN,(2)
which can be rearranged to
d
N
N
=
−
λ
N
,
(
3
)
\frac{dN}{N}= -\lambda N, (3)
NdN=−λN,(3)
Integrating both sides then gives
ln
(
N
N
0
)
=
−
λ
t
,
(
4
)
\ln(\frac{N}{N_{0}})=-\lambda t, (4)
ln(N0N)=−λt,(4)
and exponentiating both sides yields the functional form (1).
See https://mathworld.wolfram.com/ExponentialDecay.html