指数衰减-Exponential Decay

Exponential decay is the decrease in a quantity N according to the law
N ( t ) = N 0 e − λ t , ( 1 ) N(t)=N_{0}e^{-\lambda t} , (1) N(t)=N0eλt,(1)
for a parameter t and constant lambda (known as the decay constant), where e x e^{x} ex is the exponential function and N_{0}=N(0) is the initial value. Exponential decay is common in physical processes such as radioactive decay, cooling in a draft (i.e., by forced convection), and so on. Exponential decay is described by the first-order ordinary differential equation

d N d t = − λ N , ( 2 ) \frac{dN}{dt}=-\lambda N, (2) dtdN=λN,(2)
which can be rearranged to
d N N = − λ N , ( 3 ) \frac{dN}{N}= -\lambda N, (3) NdN=λN,(3)
Integrating both sides then gives

ln ⁡ ( N N 0 ) = − λ t , ( 4 ) \ln(\frac{N}{N_{0}})=-\lambda t, (4) ln(N0N)=λt,(4)
and exponentiating both sides yields the functional form (1).

See https://mathworld.wolfram.com/ExponentialDecay.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值