7、艺术与算法:从大师之作到人工智能的创新探索

艺术与算法:从大师之作到人工智能的创新探索

一、杰克逊·波洛克绘画的奥秘

2006 年,墨西哥金融家大卫·马丁内斯以 1.4 亿美元买下杰克逊·波洛克 1948 年的《第五号》,这一交易引发了人们对波洛克绘画高价的质疑,很多人觉得小孩都能做到。但实际上,模仿波洛克的绘画方式并非易事。

波洛克在画布上滴洒颜料时身体不断移动,状态常常失衡,甚至还经常醉酒,其画作是他身体与颜料、画布互动的视觉呈现。俄勒冈大学的理查德·泰勒通过数学分析发现,波洛克滴下的颜料弧线与混沌摆的轨迹相似。基于此,有人尝试用混沌摆来模仿波洛克的绘画。

混沌摆模拟绘画

  • 原理 :混沌理论的特点是系统对微小变化极其敏感,起始位置的细微调整会导致截然不同的结果。普通摆锤摆动有规律,而特制的混沌摆,其支点可在摆动时改变,从而产生混沌行为。
  • 过程 :将带孔的颜料罐固定在混沌摆的摆臂上,在地板上铺好画布,倒入颜料,让混沌摆摆动,颜料滴落在画布上形成图案。
  • 结果 :这种方式产生的视觉输出是分形,分形的无标度特性让波洛克的画作独具魅力,当你放大画面的一部分,很难区分放大的部分与整体。

分形检测与艺术魅力

泰勒的发现改变了人们对波洛克绘画的认识。多年来,很多人试图通过随机泼洒颜料来伪造波洛克的画作,但分形特性是可以测量的,数学家能以 93%的准确率识别出赝品。我们的大脑进化到能感知和适应自然世界,而自然界中的许多现象如蕨类、树枝、云朵等都是分形,所以波洛克的分形画作能吸引人类的思

【源码免费下载链接】:https://renmaiwang.cn/s/6hcxp 在C语言中,链表是一种常见的数据结构,用于存储动态数据集合。在这个“基于C的简单链表合并2排序程序”中,我们需要处理两个已经排序的链表,a和b,每个链表的节点包含学号(假设为整型)和成绩(也假设为整型)。目标是将这两个链表合并成一个新的链表,并按照学号的升序排列。我们来了解一下链表的基本概念。链表不同于数组,它不连续存储数据,而是通过指针将各个节点连接起来。每个节点通常包含两部分:数据域(存储学号和成绩)和指针域(指向下一个节点)。要实现这个合并和排序的过程,我们可以遵循以下步骤:1. **定义链表节点结构体**: 创建一个结构体类型,如`Node`,包含学号(score_id)和成绩(grade)字段,以及一个指向下一个节点的指针(next)。```ctypedef struct Node { int score_id; int grade; struct Node* next;} Node;```2. **初始化链表**: 在程序开始时,创建a和b链表的头节点,并确保它们的初始状态为空。3. **读取链表数据**: 从输入文件(假设为11.8中的文件)中读取数据,根据学号和成绩创建新的节点,并将其添加到相应的链表a或b中。这一步可能需要使用`fscanf`函数从文件中读取数据,并使用`malloc`分配内存创建新节点。4. **合并链表**: 合并两个链表的关键在于找到合适的位置插入b链表的节点。从头节点开始遍历a链表,比较当前节点的学号b链表头节点的学号。如果b链表的学号更小,就将b链表的头节点插入到a链表的当前节点后面,然后继续比较b链表的新头节点(原头节点的下一个节点)a链表的当前节点。当b链表为空或所有节点都已插入a链表时,合并完成。5. **排序链表**: 由于我们合并的时候
【源码免费下载链接】:https://renmaiwang.cn/s/0gh4u :“bp神经网络实现的iris数据分类”在机器学习领域,BP(Backpropagation)神经网络是一种广泛应用的监督学习算法,它主要用于解决非线性分类和回归问题。本项目实现了利用BP神经网络对鸢尾花(Iris)数据集进行分类。鸢尾花数据集是UCI机器学习库中的经典数据集,包含了三种不同鸢尾花品种的多个特征,如花瓣长度、花瓣宽度、萼片长度和萼片宽度,总计150个样本。:“bp神经网络实现的iris数据分类,UCI上下载的iris数据,适当调整误差精度,分类正确率可达到99%”我们需要理解UCI机器学习库中的Iris数据集。这个数据集由生物学家Ronald Fisher在1936年收集,是用于多类分类的典型实例。它包含3种鸢尾花(Setosa, Versicolour, Virginica)的4个特征,每种花有50个样本。在使用BP神经网络进行分类时,我们通常会先对数据进行预处理,包括数据清洗、标准化或归一化,以确保输入层的数值在同一尺度上。BP神经网络的核心在于反向传播算法,它通过计算预测值真实值之间的误差,并将误差从输出层向输入层逐层反向传播,调整权重以减小误差。在训练过程中,我们通常设置学习率、迭代次数以及停止训练的阈值,以达到最佳性能。在这个项目中,通过对误差精度的适当调整,使得网络能够在训练完成后对鸢尾花的分类准确率高达99%,这表明网络具有很好的泛化能力。【详细知识点】:1. **BP神经网络**:由输入层、隐藏层和输出层组成,通过梯度下降法和链式法则更新权重,以最小化损失函数。2. **鸢尾花数据集(Iris dataset)**:包含了150个样本,每个样本有4个特征和1个类别标签,常用于分类任务的基准测试。3. **特征工程**:预处理数据,可能包括缺失值处理、异常值检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值