数值方法:原理、应用与实践
1. 数值方法的重要性与动机
数值方法是将数学问题进行公式化,以便通过算术和逻辑运算来求解的技术。由于数字计算机擅长执行这些操作,数值方法有时也被称为计算机数学。
在计算机出现之前,实施这些计算所需的时间和精力严重限制了它们的实际应用。然而,随着快速、廉价的数字计算机的出现,数值方法在工程和科学问题解决中的作用得到了极大的提升。数值方法应成为每个工程师和科学家基础教育的一部分,我们不仅要了解其能力,还要清楚其局限性。
学习数值方法有以下几个重要原因:
1. 拓展问题解决能力 :能够处理大规模方程组、非线性问题和复杂几何形状,这些在工程和科学中很常见,且通常无法用标准微积分解析求解,从而大大增强问题解决能力。
2. 深入理解“现成”软件 :在职业生涯中,我们会使用包含数值方法的商业软件。了解数值方法的基本理论能让我们更明智地使用这些软件,而不是将其视为“黑匣子”。
3. 自主编程解决问题 :对于一些无法使用现成软件解决的问题,熟悉数值方法并擅长编程的人可以自行设计程序,而无需购买或委托开发昂贵的软件。
4. 高效学习计算机使用 :数值方法专为计算机实现而设计,是学习计算机能力和局限性的理想途径。成功在计算机上实现数值方法并解决难题,能让我们看到计算机对职业发展的帮助,同时学会处理数值计算中的近似误差。
5. 加深对数学的理解 :数值方法将高等数学简化为基本算术运算,能让我们深入理解一些原本晦涩的数学主题。
超级会员免费看
订阅专栏 解锁全文
173万+

被折叠的 条评论
为什么被折叠?



