AI飞速发展,全球算力井喷,我国进入AI计算高速发展阶段,GPU的自主化已经摆上案头。近日,华夏银行首席信息官吴永飞发表研究,指出GPGPU是比NPU更合适的路线,并以海光DCU为基础进行了GPU算力池化的研究。
GPGPU 是人工智能领域最主要的协处理器解决方案,占据人工智能90%以上的市场份额。
从技术上来说,GPGPU芯片可处理高并发数据,且相对NPU来说泛用性更广,比较适合作为异构计算底座,加速云端训练推理。
吴永飞也在研究报告中对这两条路线进行了对比。他表示,GPGPU路线迁移工作量低、技术门槛适中、迁移后服务无明显风险,产业生态更好;而NPU路线适配工作量大、技术门槛更高,存在风险,生态适配也存在困难。因此相较于NPU技术路线,GPGPU在当前市场具备无可比拟的应用优势。
据悉,海光DCU已于2021年实现商业化应用,与百度飞桨、北京大学等头部企业及高校进行了紧密合作。其受到认可的原因,是产品自身的核心竞争力——
性能上与A100接近,可满足绝大部分应用需求;是国内唯一能支持FP64双精度浮点运算的产品,具备AI训练需要的全精度运算能力;同时还兼容通用的“类 CUDA”环境以及国际主流商业计算软件和人工智能软件,没有生态短板。
这些优势让海光DCU获得了市场的广泛认可。目前,海光DCU已广泛应用于大数据处理、人工智能、商业计算等应用领域。