阅读笔记-Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization

  1. 研究背景:
    随着大型语言模型(LLMs)在各种任务中展现出卓越的性能,它们的安全风险也日益增加。尽管已经有多种方法用于提高LLMs的安全性,例如通过监督微调(SFT)和人类反馈的强化学习(RLHF),但这些方法在防御所谓的“越狱攻击”(jailbreaking attacks)方面仍然存在不足。越狱攻击通过精心设计的提示,绕过LLMs的设计对齐机制,诱使模型生成有害的回应。这些攻击包括要求模型扮演特定角色、启用开发者模式或以特定序列开始回应等。因此,研究如何有效防御这些攻击成为了一个迫切需要解决的问题。

  2. 过去方案和缺点:
    过去的研究主要集中在通过SFT和RLHF等方法提高LLMs的安全性,这些方法在一定程度上提高了模型的安全性,使得模型能够拒绝执行如“如何制造炸弹”等有害查询。然而,这些方法并没有明确地解决LLMs在安全性和有用性之间的目标冲突问题。在面对越狱攻击时,模型往往难以识别和处理目标优先级,导致在复杂的越狱案例中表现不佳。

  3. 本文方案和步骤:
    本文提出了一种通过目标优先级来防御越狱攻击的策略。该策略在训练和推理阶段都整合了目标优先级。在推理阶段实施目标优先级可以显著降低越狱攻击的成功率(ASR),例如将ChatGPT的ASR从66.4%降低到2.0%,同时不损害模型的一般性能。此外,将目标优先级的概念整合到训练阶段,可以进一步降低ASR,例如将LLama2-13B的ASR从71.0%降低到6.6%。即使在训练中不包含越狱样本的情况下,该方法也能将ASR减半,从71.0%降低到34.0%。

  4. 本文实验和性能:
    实验结果表明,通过在推理阶段引入目标优先级,可以显著降低越狱攻击的成功率,而不会损害LLMs的一般性能。在训练阶段引入目标优先级的概念,可以进一步提高模型对越狱攻击的防御能力。此外,实验还发现,尽管更强大的LLMs面临更大的安全风险,但它们也具有更大的潜力来对抗这些攻击。这些发现为理解越狱攻击及其防御提供了新的见解,并揭示了LLMs的能力和安全性之间的关系。

阅读总结报告:
本文针对LLMs在面对越狱攻击时的安全风险问题,提出了一种基于目标优先级的新防御策略。通过在模型的训练和推理阶段引入目标优先级,该策略能够有效降低越狱攻击的成功率,同时保持模型的一般性能。实验结果表明,该方法在不同的LLMs上都取得了显著的效果,尤其是在没有包含越狱样本的训练情况下,仍然能够显著降低攻击成功率。此外,本文还探讨了LLMs的能力和安全性之间的关系,为未来的研究提供了有价值的见解。

注1:
LLMs已经被识别出存在一系列安全问题,例如生成有害内容(Deshpande et al., 2023)、提供有偏见的回应(Parrish et al., 2022)、无意中泄露私人数据(Zhang et al., 2023b)以及促进非法活动(Zhang et al., 2023a)。幸运的是,随着对齐技术(例如SFT和RLHF)的发展,像“如何制造炸弹”这样的直接和明确的查询在绕过LLMs的防御机制方面面临更大的困难。然而,更复杂和具有欺骗性的越狱攻击继续对LLMs的安全部署构成重大威胁。我们总结了越狱攻击的代表性方法如下:(1)提示攻击。攻击者可以手动设计提示,要求LLMs扮演特定角色(Deshpande et al., 2023),获取更高权限(Li et al., 2023a),通过限制回应词汇或将有害查询包装成良性格式来转移LLMs的注意力(Wei et al., 2023; Liu et al., 2023)等。如果LLMs遵守这些指令,它们可能会生成有害内容。值得注意的是,正在进行的研究正在自动生成新的越狱提示(Yu et al., 2023)。(2)梯度攻击。Zou et al.(2023)利用白盒LLMs的梯度来优化越狱提示,并实证表明优化后的越狱提示可以转移到黑盒LLMs上。请注意,优化后的提示可能对人类来说是不可读的。(3)扰动攻击。Wei et al.(2023)提出了各种方法来扰动原始查询,例如Base64编码和去除所有元音。他们展示了GPT-4和Claude可以通过Base64编码的有害查询被攻击。(4)组合攻击。上述不同类型的越狱攻击也可以组合在一起。例如,Wei et al.(2023)结合了提示攻击和扰动攻击,并展示了组合攻击可以导致GPT-4和Claude的ASR更高。

注2:
在论文中,目标优先级的概念指的是在大型语言模型(LLMs)的训练和推理过程中,明确区分和优先考虑安全性(提供无害和安全的回应)与有用性(提供有帮助的回应)之间的目标冲突。这个概念的核心是,当模型面临可能产生有害内容的请求时,应该优先保证输出的安全性,即使这意味着拒绝回答某些问题或不提供可能被滥用的信息。

具体来说,目标优先级要求模型在处理用户查询时,首先评估该查询是否可能导致不安全或有害的结果。如果是这样,模型应该拒绝提供回应或提供一个安全且不鼓励有害行为的回应。这种方法旨在通过在模型的决策过程中明确设置安全目标的优先级,来减少越狱攻击的成功率,同时保持模型在处理合法和安全查询时的有用性。通过这种方式,模型可以更好地遵循人类价值观,提供既有帮助又安全的回答。

注3:
在论文中,作者提出了在模型的训练和推理阶段引入目标优先级的方法,以防御越狱攻击。以下是具体的步骤:

  1. 推理阶段的目标优先级(W/O Training)

    • 设计了一个即插即用的提示方法,该方法不需要额外的训练。这个提示方法包含了目标优先级要求和两个上下文示例,以指导LLMs优先考虑安全性而不是有用性。
    • 在处理用户查询时,模型被指示拒绝回答可能有害的问题,同时对良性问题提供有帮助的回答。这通过在提示中明确指出,如果回答用户查询可能导致不安全或有害的结果,模型应该拒绝回答。
  2. 训练阶段的目标优先级(W/ Training)

    • 如果训练是可行的(即模型权重和微调数据都是可访问的),作者提出了一种简单的方法,将目标优先级的概念融入训练过程。这样,模型可以在训练过程中学习并遵循指定的目标优先级要求,而无需在推理阶段添加大量的提示标记。
    • 在训练过程中,作者将不同类型的目标优先级(即优先考虑安全性而不是有用性,以及优先考虑有用性而不是安全性)暴露给模型。这通过在微调过程中随机添加目标优先级要求到输入中实现。对于良性用户查询,随机添加目标优先级要求;对于有害查询,首先添加优先考虑安全性的要求,然后添加优先考虑有用性的要求。
    • 在训练输出中,包括两个关键部分:一个[内部思考]部分,用于分析是否遵循用户指令会违反优先级要求,以及一个[最终回应]部分,提供有帮助且安全的回答。

通过这种方法,模型在训练过程中学会了识别和处理目标优先级,从而在推理时能够更好地防御越狱攻击。这种方法不仅显著降低了越狱攻击的成功率,而且没有损害模型的一般性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值