Spring AI接入本地ollama大模型开发

Spring AI简介

  • Spring AI 是 AI 工程的应用框架。其目标是将 Spring 生态系统设计原则(如可移植性和模块化设计)应用于 AI,并推广使用 POJO 作为 AI 领域应用程序的构建块。
  • 特征:跨AI 提供商的可移植 API 支持,适用于聊天、文本到图像和嵌入模型。支持同步和流 API 选项。还支持下拉以访问特定于模型的功能。

  • 聊天模型:OpenAI、Azure Open AI、Amazon Bedrock、Cohere’s Command(AI21 Labs’ Jurassic-2、Meta’s LLama 2、Amazon’s Titan)、Google Vertex AI Palm、Google Gemini、HuggingFace (access thousands of models, including those from Meta such as Llama2)、Ollama(run AI models on your local machine)、MistralAI

本地环境准备

  • 硬件条件:最好具有N卡,ollama可以在轻量运行大模型提供支持。内存8G以上,cpu好一点。

  • 软件环境:windows系统安装ollama

  • ollama:配置开发测试模型:qwen:7b(运行 7B 型号至少需要 8 GB 可用 RAM (内存),运行 13B 型号至少需要16 GB可用 RAM (内存) ,运行 33B 型号至少需要32 GB 可用 RAM (内存))

    # 下载千问 7b模型
    ollama run qwen:7b
    

创建Spring AI项目

  1. 打开IDEA创建一个新的spring boot项目,填写项目名称和位置,类型选择maven,组、工件、软件包名称可以自定义,JDK选择17+即可,java语言标准和JDK相同即可
    在这里插入图片描述
  2. 配置Spring Boot版本和开发所需的依赖,主要如下图所示
    • Spring Boot版本可以选择3.2.5或者更高的版本(作者使用3.2.5和3.2.6(SNAPSHOT)可以正常开发)
    • Spring Boot DevTools:spring项目热部署工具,修改完代码(不含application和pom配置文件)即刻热部署项目
    • Lombok:通过配置快速配置对象的get、set、toString
    • Spring AI:Spring AI是一个用于AI工程的应用框架
      在这里插入图片描述
  3. 创建完成后,项目结构大体如下(这里删除了无用的maven文件内容、修改application的文件格式为yaml)
    在这里插入图片描述

配置项目pom和application文件

  • 注意:修改pom文件,重新下载spring ai依赖需要科学上网,请确保网络连接没有问题
  1. 打开项目的pom文件,修改spring ai的版本(项目默认使用稳定版0.8.1)
    • 主要注意默认的spring ai版本和配置依赖jar包仓库(maven仓库中还没有spring ai的依赖)
<properties>
    <java.version>21</java.version>
    <spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version>
</properties>

<repositories>
    <repository>
        <id>spring-snapshots</id>
        <name>Spring Snapshots</name>
        <url>https://repo.spring.io/snapshot</url>
        <releases>
            <enabled>false</enabled>
        </releases>
    </repository>
    <repository>
        <id>spring-milestones</id>
        <name>Spring Milestones</name>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
</repositories>

<pluginRepositories>
    <pluginRepository>
        <id>spring-snapshots</id>
        <name>Spring Snapshots</name>
        <url>https://repo.spring.io/snapshot</url>
        <releases>
            <enabled>false</enabled>
        </releases>
    </pluginRepository>
</pluginRepositories>
  1. 配置application文件(api-key的获取参考Spring AI开发前期开发指导
spring:
  application:
    name: ChatOllama
  ai:
    openai:
      base-url: http://localhost:11434
server:
  port: 8085

controller接口开发

  • 图片资源
    在这里插入图片描述
  • controller内容
import jakarta.annotation.Resource;
import org.springframework.ai.chat.ChatResponse;
import org.springframework.ai.chat.messages.Media;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatClient;
import org.springframework.ai.ollama.api.OllamaOptions;
import org.springframework.core.io.ClassPathResource;
import org.springframework.util.MimeTypeUtils;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import java.io.IOException;
import java.util.List;

@RestController
public class OllamaController {
    @Resource
    private OllamaChatClient ollamaChatClient;


    @RequestMapping("/ai/ollama")
    public Object chat(@RequestParam(value = "msg") String msg) {
        ChatResponse response = ollamaChatClient.call(
                new Prompt(msg,
                        OllamaOptions.create()
                                .withModel("qwen:7b")
                                .withTemperature(0.8f)
                )
        );
        System.out.print(response.getResult().getOutput());
        return response.getResult().getOutput();
    }
    @GetMapping("/ai/generateStream")
    public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        Prompt prompt = new Prompt(new UserMessage(message),
                OllamaOptions.create().withModel("qwen:7b"));
        return ollamaChatClient.stream(prompt);
    }

    /**
     * 本次使用llava:7b 硬件有限,怕跑的很慢 所以不返回结果,直接打印
     */
    @GetMapping("/ai/test")
    public void test() throws IOException {
        byte[] imageData = new ClassPathResource("/multimodal.test.png").getContentAsByteArray();

        var userMessage = new UserMessage("描述一下图片内容?",
                List.of(new Media(MimeTypeUtils.IMAGE_PNG, imageData)));

        ChatResponse response = ollamaChatClient.call(
                new Prompt(List.of(userMessage),
                        OllamaOptions.create().withModel("llava:7b").withMainGPU(1)
                )
        );
        System.out.println(response.getResult().getOutput().getContent());
    }
    //更多的图片相关的接口开发可以参考MultiModel项目的内容
}

运行测试

#获取ollama已经下载的模型
http://localhost:11434/api/tags
http://localhost:8085/ai/ollama?msg=hello
http://localhost:8085/ai/generateStream=hello
http://localhost:8085/ai/test
### 配置Spring Boot以调用本地Ollama DeepSeek API 为了使Spring Boot应用程序能够成功调用本地安装的Ollama DeepSeek服务,需按照特定流程设置项目环境。 #### 创建Spring Boot应用并添加必要依赖 利用[start.spring.io](https://start.spring.io/)初始化一个新的Spring Boot工程,在构建工具选项中选择Maven或Gradle,并指定Java版本。接着,在`Dependencies`部分加入`Spring Web`和其他所需组件来支持HTTP请求处理功能[^2]。对于集成Ollama的支持,则应确保已引入了`sprinɡ-ai-oⅼlama-spring-boot-starter`这一依赖项到项目的`pom.xml`文件里[^4]: ```xml <dependency> <groupId>com.oⅼlama</groupId> <artifactId>sprinḡ-ai-oⅼlama-spring-boot-starter</artifactId> <version>${latest.version}</version> </dependency> ``` 注意替换`${latest.version}`为实际可用的最新版本号。 #### 设置application.yml配置文件 编辑位于资源目录下的`application.yml`文件,定义用于连接至本地运行之Ollama DeepSeek实例的服务URL及其他参数。如下所示是一个典型的YAML配置片段[^5]: ```yaml server: port: 8080 spring: application: name: spring-ai ai: oⅼlama: base-url: http://localhost:11434 chat: options: model: deepseek-r1:1.5b autoconfigure: exclude: - org.spriпgframework.cloud.function.context.config.ContextFunctionCatalogAutoConfiguration ``` 此段落中的端口号(`port`)、基础URL(`base-url`)以及模型名称(`model`)均依据实际情况调整;而自动装配排除列表则防止不必要的Bean被加载入上下文中。 #### 编写控制器类发起API请求 最后一步是在Spring Boot程序内部编写相应的RESTful接口或者Service层逻辑去触发向DeepSeek发送查询命令的动作。下面给出了一种简单的Controller实现方式作为例子: ```java @RestController @RequestMapping("/api/deepseek") public class DeepSeekController { @Autowired private OllamaClient ollamaClient; @PostMapping("/query") public ResponseEntity<String> query(@RequestBody String userInput){ try { // 假设这里有一个方法可以接受字符串输入并向DeepSeek提问 String response = ollamaClient.query(userInput); return new ResponseEntity<>(response, HttpStatus.OK); } catch (Exception e) { return new ResponseEntity<>("Error occurred while processing request.",HttpStatus.INTERNAL_SERVER_ERROR); } } } ``` 在此代码片断中,假设存在名为`OllamaClient`的对象负责执行具体的网络通信操作并与远程AI引擎交互。具体细节取决于所使用的库的具体API设计[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值