自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 Str->int

C++里string转int常见有atoi和stoi。头文件都是#includeatoi()的参数是const char*, 所以对一个字符串要先c_str()把string转换成const char类型,而stoi()的参数是const string,可直接使用。#include<cstring>string str;int a = atoi(str.c_str());int b = stor(str);atoi不会做超出范围的检查,超出上界输出上界,超出下界输出下界。sto

2020-08-09 10:16:37 235

转载 双轮差速模型和航迹推算

转载:添加链接描述

2020-06-19 15:02:28 1885

转载 激光雷达测距原理

搬运自:激光雷达测距原理

2020-06-19 11:20:19 2349

原创 leet刷题小菜鸡-50.Pow(x,n)

题目实现pow(x,n),即计算x的n次幂函数注意:n可以为负数说明:- -100.0 < x < 100.0- n是32位有符号整数,其数值范围是$[-2^{31}, 2^{31} - 1]$//这个思路还是比较好想的,主要是要考虑数值溢出问题class Solution {public: double myPow(double x, int n) { double res; long long N = n; res =

2020-05-20 21:02:52 237

原创 leet刷题小菜鸡-47.字母异位词分组

题目给定一个字符串数组,将字母异位词组组合在一起。字母异位词指字母相同,但排列不同的字符串。示例输入:[“eat”, “tea”, “tan”, “ate”, “nat”, “bat”]输出:[ ["ate","eat","tea"], ["nat","tan"], ["bat"]]说明- 所有输入均为小写字母- 不考虑答案输出的顺序解答先排序,再hash,就可以找出是否重复了//亮点在map的value,即num上,注意其所表达的意思class Solution {p

2020-05-20 20:30:00 220 1

原创 leet刷题小菜鸡-47.全排列2

题目:给定一个可包含重复数字的序列,返回所有不重复的全排列。分析相较于46题不含重复的简单全排列问题,较为复杂一些,具体针对树加了剪枝操作。剪枝分析见leetcode题解。谈一谈我的思路过程backTrack() { //结束条件 if(path not in res) res.push_back(path); return; //在这里我最开始的思路是判断path是否包含在res中, //但问题是这里较为复杂(毕竟是C艹不是PY)}答案class Solution {pu

2020-05-19 21:47:12 292

原创 leet刷题小菜鸡-46.全排列

题目:给定一个没有重复数字的序列,返回其中所有可能的全排列。解答典型的回溯问题//回溯框架,三步走[] backTrack() { for() { //做选择 if() //递归 backTrack(); //撤销选择 }}题目答案class Solution {public: vector<vector<int>> res; vector<int> nums; vector<int> pat

2020-05-19 21:14:57 186

原创 leet刷题小菜鸡-45.跳跃游戏||

题目描述:给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。你的目标是使用最少的跳跃次数到达数组的最后一个位置。示例输入:[2, 3, 1, 1, 4]输出:2解贪心,注意贪心的值是下一次能跳到最远。解释如下:假设现在处于i处,第i处的值为nums[i],则下一个可能在的位置为[i+1, i+nums[i]]。所以现在面临的问题是,如何选取下一跳的位置?这里我们使用贪心的思想,选取能使下一跳获得最远距离那个位置。结合示例,比如目前处于第0

2020-05-19 20:38:55 163

原创 Markdown语法mark

Markdown语法mark

2020-05-18 20:15:42 167

原创 Cube_Slam

官网:https://arxiv.org/abs/1806.00557项目地址:https://github.com/shichaoy/cube_slam论文地址:https://arxiv.org/pdf/1806.00557.pdf先跑跑项目,论文回头看。项目安装血泪史编译环境:Ubuntu-18.04.1 ROS-melodic-1.14.3 g+±7.4.0std::vec...

2019-10-17 12:01:31 1731 4

原创 SLAM随笔(BA小结)

//参考https://optsolution.github.io/archives/58892.htmlBA在干什么BA实质是一个图优化(参考g2o)模型,目的是最小化重投影误差。误差是空间点在图像平面上的投影与重投影的误差。故,图的节点是相机和空间点,边是投影关系最终转化的结果是一个优化最小二乘的问题。(梯度下降,牛顿法,高斯牛顿法,LM)补:解方程问题针对Ax=bAx=bAx...

2019-10-16 09:47:49 299

原创 Code随笔

Sophus/SO3.hSophus/SE3.hMarkOpenCV:class cv::Mat:.at(int row, int col):访问每个元素的方法

2019-10-14 22:17:33 132

原创 优化算法小结

对比梯度下降,牛顿法,高斯牛顿梯度下降实质是使用了雅克比矩阵(一阶导数矩阵)优点:简单,缺点:1、取得的是极小值,所以只有在凸函数上才可能找到全局最小。2、与初始值设定有关,若初始值选取不当,需要迭代很多次3、与步长有关,步长设置不当可能会形成震荡4、收敛较慢牛顿法实质是在梯度下降的基础上进一步考虑了二阶项,即Hessian矩阵(二阶导数矩阵)。通俗的说,牛顿法迭代优化时既利用...

2019-10-14 17:04:34 626

原创 Eigen-学习随笔(一)

摘自Eigen官网,学习的随笔Class Matrix构造器:构造器分为动态和非动态,MatrixXt(t:is the type)为动态,Matrix3t为非动态;以下两者效果一样。MatrixXd m(2,2); Matrix2d m;Shape:对Matrix的实例,提供rows(), cols(), size()方法来查询Shape.MatrixXd m(2,5);m....

2019-10-10 10:05:24 434

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除