POI(Point-of-Interest)即兴趣点也可理解为感兴趣的地点,POI推荐方法区别于传统的推荐商品在于它是推荐用户感兴趣的地点,可能是用在一些旅游出行的应用上。
关于POI recommendation的分类:
-
Pure Check-in Data Based POI Recommendation
从字面意思理解就是只用登录数据来构建推荐系统,与协同过滤的方法类似,构建user-location矩阵C,表示用户u登入地点j的次数。计算用户相似度,然后推荐。
-
Geographical Influence Enhanced POI Recommendation
Tobler第一地理定律:Everything is related to everything else, but near things are more related than distant things
地理影响增强的POI推荐,考虑到用户倾向于去POI进的地方,而非较远的一个。在用户的登入行为中通常表现为地理聚类现象。这种方法主要是计算概率,即用户去一个新地点的概率,作者提到了一些矩阵分解的方法,包括用RFM(正则矩阵分解),PFM(概率矩阵分解)来构造推荐的方法。(其中有很多比较复杂的公式,未能完全看懂)
-
Social Influence Enhanced POI Recommendation
社交影响在推荐的表现并不如地理因素那样强
- <