learining user's intrinsic and extrinsic interests for point of interest recommendation IJCAI17

huayu li
Point of interest recommendationPOI推荐
In this paper, 提出一个统一的方法,来有效学习细粒的(fine-grained)、可解释的用户兴趣,自适应建模缺失数据。用户的general 兴趣from 两个方面:内部兴趣和外部兴趣, so we propose a model (采用排序约束的方法),而且本文还提出自适应的面向位置的方法来capture丢失数据的inherent property.
Inspired by 心理学和社会学关于分辨用户的行为是否受外部因素的影响,
内部兴趣:用户内部品味的驱动
外部兴趣:受环境影响

  • 2.1 Our Framework

用户i的整体general 兴趣(d维向量):
在这里插入图片描述
在这里插入图片描述
we also propose 自适应建模缺失数据:位置j(d维)
对用户的内在和外在兴趣和缺失数据进行建模,我们的框架的总体损失系数为:
在这里插入图片描述
3部分 :1st:用于model观测数据和未观测数据的经验损失,在2.3 节中介绍
2cd:合并了对用户内在兴趣U(i)和外在兴趣U(e)建模的附加约束,将在第2.2节中介绍。
3rd:对所有变量进行正则化处理以避免过度拟合

  • 2.2 modeling user intrinsic and extrinsic interests(考虑地理位置的影响)

定义3:一个用户 有1到多个活动区域,活动区域内用户可以到达每一个POI而不受地理限制
(活动区域由一组用户已访问(visted)位置构成)
用户活动区域计算:基于用户历史位置数据聚类,在每个簇中,首先,选择每个访问的位置为圆心,某个距离阈值为半径的圆内的所有位置,将这些位置合并为一个活动区域。
modeling user intrinsic interests
在这里插入图片描述
用户i的intrinsic interests*位置j的位置向量:用户由于intrinsic interests驱动对位置j的喜欢度(perference)
j活动区域已访问(visted)位置,l活动区域未访问(unvisted==unobservation)位置
modeling user extrinsic interests
在这里插入图片描述
l活动区域外未访问位置。基于外部兴趣,每个用户i更喜欢已访问位置j,而不是活动区域之外的任何未访问位置

在这里插入图片描述
公式(2)的第二部分的损失系数如上:(违反约束带来的损失之和)

  • 2.3Modeling the Missing Data(自适应学习用户对未访问数据的喜好度)

**观察到:**用户对未访问区域的喜好度是negative(不喜欢)和缺失的positive values的混合(可能喜好,但未意识到),

公式(2) 中的经验损失函数(1st)具体形式化为:
在这里插入图片描述
C:n*m的频度矩阵,n个用户m个位置(c(ij)=0表示i用户未访问j位置,c(ij)!=0表示i用户访问j位置c(ij)次)
W:一个与访问频度(check-in frequency)和r相关的权值矩阵,具体计算:
在这里插入图片描述
未访问位置 w(ij)=1,访问位置 w(ij)>1,
R: 反馈矩阵:
访问位置(r(ij )==1)的反馈as 1, 未访问位置的反馈as 0
增广矩阵P:已访问位置的取值=0,主要用于未访问位置的反馈值的修正(用户对未访问区域的喜好度是negative(不喜欢)和缺失的positive values的混合(可能喜好,但未意识到),因此未访问位置的反馈值取0附近的值。)
两个properties: (1)定位导向(location-oriented),即,其中包含m个潜在因素,用于高效计算;(2)它具有较小的变化范围,可以降低模型学习中的噪声。
P可以通过引入m维向量q得到,
在这里插入图片描述
qmin和qmax是将P限制在0附近的小范围的参数,(比如qmin和qmax都等于0,则未访问得位置都设为0)
R^:是一个预测的反馈矩阵。用户i对位置j的喜好度由
在这里插入图片描述
近似计算(预测)。
在方程(6)中,很明显R用于模拟观察到的反馈,而P解释了未观察到的反馈并解释了缺失数据的差异。

  • 2.4optimization algorithm

框架的总体损失系数为:

在这里插入图片描述

=
在这里插入图片描述
W矩阵也用来平衡squared平方误差和ranking 误差
整个过程也需要一些预处理和近似阶段
1)通过helper matrix Z(用sigmoid函数)来得到公式1中的A和B矩阵
2)公式5中(x)+函数的近似计算(a是参数):
在这里插入图片描述
所以,公式8=
在这里插入图片描述
使用SGD求得结果(用户i的总体喜好度U,位置矩阵 V, helper matrixZ,q)

  • 3.实验,

数据集:公开数据集Gowalla and Foursquare datasets
访问记录(用户ID,位置ID, 时间戳)
划分train: 时间戳的前80%和test data : 时间戳的后20%
evaluation metrics:准确率,召回率,MAP(排序性能)
1)VS. some baseline methods
2.参数的影响
5. conclusion
在本文中,我们提出了一种统一的方法来集成平方误差损失和排序误差损失,通过有效地学习细粒度和可解释的用户兴趣,并自适应地建模丢失的数据来解决位置推荐任务。 具体而言,每个用户的一般兴趣被建模为她的内在和外在利益的混合,我们在这些利益的基础上制定了我们统一方法中的排名约束。 此外,提出了一种自适应的面向位置的方法来捕获缺失数据的特征,然后将其表示为统一优化目标中的平方误差损失。 为了评估我们的模型,我们对现实世界的数据集进行了大量实验,并将我们的方法与几个基线进行了比较。 实验结果表明了我们模型的有效性。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值