HDU5288 OO’s Sequence(暴力枚举)

OO’s Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 644    Accepted Submission(s): 241


Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy a i mod a j=0,now OO want to know
i=1nj=inf(i,j) mod 109+7.

 

Input
There are multiple test cases. Please process till EOF.
In each test case: 
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers a i(0<a i<=10000)
 

Output
For each tests: ouput a line contain a number ans.
 

Sample Input
  
  
5 1 2 3 4 5
 

Sample Output
  
  
23
 

Source
 
题目大意:定义一个函数f(l,r)是i(l<=i<=r)的取值个数,使得对任意的j(l<=j<=r且j!=i)都有ai/aj!=0。
解题思路:
例如样例:1 2 3 4 5
当i=1时,1是1的因数,2不是1的因数,3不是1的因数,4不是1的因数,5不是1的因数, 虽然1是1的因数,但是j!=i, 因此,在区间 (1,1), (1,2), (1,3), (1,4),(1,5)上,i=1都是一个解。
当i=2时,1是2的因数,2是2的因数,3不是2的因数,4不是2的因数,5不是2的因数,虽然2是2的因数,但是j!=i,因此,在区间(2,2),(2,3),(2,4),(2,5),i=2都是一个解。
当i=3时,1是3的因数,2不是3的因数,3是3的因数,4不是3的因数,5不是3的因数,虽然3是3的因数,但是j!=i,因此,在区间(2,3),(2,4),(2,5),(3,3),(3,4),(3,5)i=3都是一个解。
当i=4时,1是4的因数,2是4的因数,3不是4的因数,4是4的因数,5不是4的因数,虽然4是4的因数,但是j!=i,因此,在区间(3,4),(3,5),(4,4),(4,5)上,i=4都是一个解。
当i=5时,1是5的因数,2不是5的因数,3不是5的因数,4不是5的因数,5是5的因数,虽然5是5的因数,但是j!=i,因此,在区间(2,5),(3,5),(4,5),(5,5)上,i=5都是一个解。
我们会发现,当i是解时,则包含i的区间最大为i左边离它最近的因子的位置left[i] 到i右边离它最近的因子的位置righ[i]。那么这个区间所包含的区间并且包含i的区间都是符合题目的。一共有(i-lef[i])*(righ[i]-i)个。把所有的i相加即可。
接下来如何寻找left[i]和righ[i],如果每一次都是遍历一遍数组,显然会T的。
因为题目给出的ai的取值范围是(0<ai<=10000),所有预处理出10000以内的每一个数在10000以内的因子。然后标记每一个i的左边和右边离它最近的它的因子的位置。

AC代码如下:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#include <limits.h>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-4)
#define inf (1<<28)
#define sqr(x) (x) * (x)
using namespace std;
typedef long long ll;
typedef unsigned long long ULL;
#define mod 1000000007
#define maxn 100010
vector<int> divisor[maxn];//10000以内divisor[i]的所有因子
int position[maxn];//位置
int num[maxn];//数ai

int lef[maxn];//左因子的最大位置
int righ[maxn];//右因子的最大位置

int main()
{
    int i,j,k,n;
    //预处理,得到10000以内的每一个数的10000以内的因子
    for(i=1;i<= 10000;i++)
    {
        divisor[i].clear();//
        for(j=1;j*j<=i;j++)
        {
            if(i%j==0)//数i的10000以内的所有因子
            {
                divisor[i].push_back(j);
                divisor[i].push_back(i/j);
            }
        }
    }
    while(scanf("%d",&n)!=EOF)
    {
        for(i=1;i<=n;i++)
            scanf("%d",&num[i]);

        memset(position,0,sizeof(position));
        //寻找第i个数左边离它最近的因子的位置(逐步更新第i个数左边因子的位置(初始均为0))
        for(i=1;i<=n;i++)
        {
            int u=num[i];
            int p=0;
            for(j=0;j<divisor[u].size();j++)//寻找第i个数左边离它最近的因子的位置p
                p=max(p,position[divisor[u][j]]);
            lef[i]=p;//记录位置p
            //printf("%d ",p);
            position[u]=i;//更新第i个数左边因子的位置
        }

        memset(position,0x3f,sizeof(position));
        //寻找第i个数左边离它最近的因子的位置(逐步更新第i个数左边因子的位置(初始均为0))
        for(i=n;i>0;i--)
        {
            int u=num[i];
            int p=n+1;
            for(j=0;j<divisor[u].size();j++)
                p=min(p,position[divisor[u][j]]);
            righ[i]=p;
            //printf("%d ",p);
            position[u]=i;
        }

        long long ans=0,l,r;
        for(i=1;i<=n;i++)
        {
            ans+=(long long)(i-lef[i])*(righ[i]-i);
            ans%=mod;
        }
        printf("%ld\n",ans);
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值