(1)使用onnxsim ==0.4.1版本、ort版本1.13.1

否则使用--dynamic True时所生成的onnx就会乱掉。
(2)利用trtexec生成engine
所使用的命令如下:
trtexec.exe --onnx=yolov5n_ptq_detect_dynamic.onnx --saveEngine=ptq_int8_fp16.trtmodel --int8 --fp16
=== Trace details ===
[11/28/2022-01:21:54] [I] Trace averages of 10 runs:
[11/28/2022-01:21:54] [I] Average on 10 runs - GPU latency: 10.0542 ms - Host latency: 11.208 ms (end to end 35 ms, enqueue 1.81131 ms)
[11/28/2022-01:21:54] [I] Average on 10 runs - GPU latency: 9

本文详细介绍了YoloV5模型量化过程中的关键步骤,包括使用特定版本的onnxsim和ort进行模型转换,利用trtexec生成INT8和FP16的engine,并对比了两者在推理速度上的差异。通过绘制engine图和性能分析图表,展示了量化对模型性能的影响,证实了INT8加FP16的组合在速度上优于单纯的INT8量化。
订阅专栏 解锁全文
2050

被折叠的 条评论
为什么被折叠?



