yolov5的qat量化

本文详细介绍了YOLOv5的量化训练流程,包括QAT(量化感知训练)的步骤。不同于传统的使用标签进行监督,QAT方案直接使用图片进行训练,通过在FP32模型基础上插入伪量化节点,进行量化感知训练和ONNX模型导出。文章重点阐述了如何选择网络层进行QAT微调,以及train函数的实现,包括模型间监督、损失计算和回传更新,以达到较好的量化效果。
摘要由CSDN通过智能技术生成

前两篇文章讲解了yolov5的敏感层分析及ptq量化流程,本篇文章在前两篇文章的基础上,继续讲解yolov5的qat量化流程。
ptq和qat的区别如下所示:
在这里插入图片描述
qat量化流程如下所示

  1. 首先在数据集上以FP32精度进行模型训练,得到训练好的baseline模型;
  2. 在baseline模型中插入伪量化节点,
  3. 进行PTQ得到PTQ后的模型;
  4. 进行量化感知训练;
  5. 导出ONNX 模型。

与传统量化方案的使用label进行监督不同,这次的qat量化方案,直接使用图片进行qat量化,即与ptq统一使用一个dataloader,且不使用标签数据进行qat的量化训练,即可得到一个不错的模型结果:
在这里插入图片描述
接下来会根据如下流程详细介绍qat方案的具体操作:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ghx3110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值