前两篇文章讲解了yolov5的敏感层分析及ptq量化流程,本篇文章在前两篇文章的基础上,继续讲解yolov5的qat量化流程。
ptq和qat的区别如下所示:

qat量化流程如下所示:
- 首先在数据集上以FP32精度进行模型训练,得到训练好的baseline模型;
- 在baseline模型中插入伪量化节点,
- 进行PTQ得到PTQ后的模型;
- 进行量化感知训练;
- 导出ONNX 模型。
与传统量化方案的使用label进行监督不同,这次的qat量化方案,直接使用图片进行qat量化,即与ptq统一使用一个dataloader,且不使用标签数据进行qat的量化训练,即可得到一个不错的模型结果:

接下来会根据如下流程详细介绍qat方案的具体操作:
本文详细介绍了YOLOv5的量化训练流程,包括QAT(量化感知训练)的步骤。不同于传统的使用标签进行监督,QAT方案直接使用图片进行训练,通过在FP32模型基础上插入伪量化节点,进行量化感知训练和ONNX模型导出。文章重点阐述了如何选择网络层进行QAT微调,以及train函数的实现,包括模型间监督、损失计算和回传更新,以达到较好的量化效果。
订阅专栏 解锁全文
3039

被折叠的 条评论
为什么被折叠?



