yolov5量化注意事项(二)

本文介绍了在模型量化过程中,特别是量化感知训练(QAT)的一些关键注意事项,包括模型导出、精度变化以及量化对磁盘占用和运行时内存的影响。QAT大致流程涉及插入伪量化节点、PTQ校准和导出onnx模型。量化后的onnx模型文件会变大,但运行时占用的显存减少。
摘要由CSDN通过智能技术生成

一、引言

前面的博文,是PTQ的注意事项。本篇文章是记录QAT部分需要修改的一些要点。

注:本文仅供自己的笔记作用,防止未来自己忘记一些坑的处理方式

QAT的大致流程:(1)训练生成基础模型,通常是fp32的pt文件;(2)为fp32的pt文件插入伪量化节点;(3)PTQ获取初步int8校准模型;(4)QAT(量化感知训练),大约10几个epoch就够了,反正就是不需要像 from scratch那种长时间训练;(5)导出onnx文件

二、注意事项

2.1 

 

 注意这里在模型准备阶段。自己手动添加yaml超参数文件,这个随便一个都可以

2.2 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曙光_deeplove

你的鼓励是我努力的最大源泉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值