1 算法的哲学思考
算法在“在线新华字典”中的解释是“解题方案的准确和完整的描述。是一个有穷的动作步骤序列,只有一个初始态,每个动作只有一个后继动作,一步一步地直到序列结束。是解题从开始到结束的动作全过程。”。“算”字的解释是“核计,计数”,“法”字的解释是“体现统治阶段的意志,国家制定和颁布的公民必须遵守的行为规则”。
1.1 算法的定义
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
1.2 算法的特征
一个算法应该具有以下七个重要的特征:
(1) 有穷性(Finiteness)
算法的有穷性是指算法必须能在执行有限个步骤之后终止
(2) 确切性(Definiteness)
算法的每一步骤必须有确切的定义;
(3) 输入项(Input)
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
(4) 输出项(Output)
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
(5) 可行性(Effectiveness)
算法中执行的任何计算步都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);
(6) 高效性(High efficiency)
执行速度快,占用资源少;
(7) 健壮性(Robustness)
对数据响应正确。
1.3 算法的复杂度
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
(1) 时间复杂度
算法的时间复杂度是指执行算法所需要的时间。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
(2) 空间复杂度
算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
1.4 算法设计与分析的基本方法
(1) 递推法
递推算法是一种用若干步可重复的简运算(规律)来描述复杂问题的方法. 递推是序列计算机中的一种常用算法。它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定项的值。其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。
(2) 递归法
程序调用自身的编程技巧称为递归( recursion)。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。注意: (1) 递归就是在过程或函数里调用自身; (2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 穷举法
穷举法,或称为暴力破解法,是一种针对于密码的破译方法,即将密码进行逐个推算直到找出真正的密码为止。例如一个已知是四位并且全部由数字组成的密码,其可能共有10000种组合,因此最多尝试10000次就能找到正确的密码。理论上利用这种方法可以破解任何一种密码,问题只在于如何缩短试误时间。因此有些人运用计算机来增加效率,有些人辅以字典来缩小密码组合的范围。
(4) 贪心算法
贪婪算法是一种对某些求最优解问题的更简单、更迅速的设计技术。用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题, 通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。
贪婪算法是一种改进了的分级处理方法。其核心是根据题意选取一种量度标准。然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。这种能够得到某种量度意义下最优解的分级处理方法称为贪婪算法。 对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。 一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪婪算法求解则特别有效。最优解可以通过一系列局部最优的选择即贪婪选择来达到,根据当前状态做出在当前看来是最好的选择,即局部最优解选择,然后再去解做出这个选择后产生的相应的子问题。每做一次贪婪选择就将所求问题简化为一个规模更小的子问题,最终可得到问题的一个整体最优解。
(5) 分治法
分治法是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
分治法所能解决的问题一般具有以下几个特征:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
(6) 动态规划法
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。
(7) 迭代法
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代法又分为精确迭代和近似迭代。“二分法”和“牛顿迭代法”属于近似迭代法。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
(8) 分枝界限法
分枝界限法是一个用途十分广泛的算法,运用这种算法的技巧性很强,不同类型的问题解法也各不相同。分支定界法的基本思想是对有约束条件的最优化问题的所有可行解(数目有限)空间进行搜索。该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集(称为分支),并为每个子集内的解的值计算一个下界或上界(称为定界)。在每次分支后,对凡是界限超出已知可行解值那些子集不再做进一步分支。这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。这一过程一直进行到找出可行解为止,该可行解的值不大于任何子集的界限。因此这种算法一般可以求得最优解。
与贪心算法一样,这种方法也是用来为组合优化问题设计求解算法的,所不同的是它在问题的整个可能解空间搜索,所设计出来的算法虽其时间复杂度比贪婪算法高,但它的优点是与穷举法类似,都能保证求出问题的最佳解,而且这种方法不是盲目的穷举搜索,而是在搜索过程中通过限界,可以中途停止对某些不可能得到最优解的子空间进一步搜索(类似于人工智能中的剪枝),故它比穷举法效率更高。
1.5 算法的表现形式
描述算法可以使用自然语言、伪代码、流程图和PAD图等多种不同的方法来描述,其中最普遍的是流程图。
1.6 算法的分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。算法可以宏泛的分为三类:
(1) 有限的,确定性算法
这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
(2) 有限的,非确定算法
这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
(3) 无限的算法
是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
2 程序基本运算的认识
算法=基本运算+运算轨迹+运算数据,即一个算法是由基本运算、运算轨迹
和运算数据构成。基本运算是程序中的最小的不可分隔的运算原子活动,如付值运算、关系运算等;运算轨迹是指基本运算按顺序、分支、循环三个形式中的一个或几个组合而成的时间序;运算数据是指基本运算中要用到的变量、结构、数组等数据。
程序中的基本运算包括赋值运算、关系运算、逻辑运算、位运算、位移运算、集合运算等。在程序中基本运算是由表达式构成。表达式由多个(两个或两个以上)标识符用各种运算符号连接起来而成,即表达式=标识符+运算符。
2.1 基本运算分类
2.1.1 赋值运算
赋值运算表达式=标识符+赋值运算符。赋值运算符分为简单赋值(=)、复合算术赋值(+=,-=,*=,/=,%=)和复合位运算赋值(&=,|=,^=,>>=,<<=)三类。
2.1.2 算述运算
算述运算表达式=标识符+算述运算符。算述运算符分为加(+)、减(-)、乘(*)、除(/)、求余(或称模运算,%)、自增(++)、自减(--)等。
2.1.3 关系运算
关系运算表达式=标识符+关系运算符。关系运算符分为大于(>)、小于(<)、等于(==)、 大于等于(>=)、小于等于(<=)和不等于(!=)等。
2.1.4 逻辑运算
逻辑运算表达式=标识符+逻辑运算符。逻辑运算符分为与(&&)、或(||)、非(!)等。
2.1.5 位运算
位运算表达式=标识符+位运算符。位运算符分为位与(&)、位或(|)、位非(~)、位异或(^)等。
2.1.6 位移运算
位移运算表达式=标识符+位移运算符。位移运算符分为左移(<<)、右移(>>)等。
2.1.7 条件运算
条件运算表达式=标识符+条件运算符。条件运算符是一个三目运算符,用于条件求值(?:)。
2.1.8 特殊运算
特殊运算表达式=标识符+特殊运算符。特殊运算符分为括号(),下标[],成员(.)等。
2.2 基本运算的优先级和结合性
运算符是有优先级的。在表达式中,优先级较高的先于优先级较低的进行运算。 而在一个运算量两侧的运算符优先级相同时, 则按运算符的结合性所规定的结合方向处理。 语言中各运算符的结合性分为两种,即左结合性(自左至右)和右结合性(自右至左)。例如算术运算符的结合性是自左至右,即先左后右。如有表达式x-y+z则y应先与“-”号结合, 执行x-y运算,然后再执行+z的运算。这种自左至右的结合方向就称为“左结合性”。而自右至左的结合方向称为“右结合性”。 最典型的右结合性运算符是赋值运算符。如x=y=z,由于“=”的右结合性,应先执行y=z再执行x=(y=z)运算。
3 程序中的精典算法
4 JAVA语言中的基本运算
5 JAVA语言的精典算法实例