Zero-Shot Image Dehazing(IEEE 2020)

问题:如何以无监督和零拍的方式去除给定图像中的雾

贡献:我们提出了一种基于层分离思想的新方法,将模糊图像视为几个“简单”层的纠缠,即无模糊图像层、透射率图层和大气光层。

1)提出的ZID以无监督而非有监督的方式工作。换句话说,我们的方法不需要hazyclean对图像,这避免了图像采集的大量劳动。虽然我们使用了一个提示来训练我们模型的一个子网络,但它是从模糊的图像中估计出来的,不需要地面真相;2) ZID是一种“零射击”方法。换句话说,我们的方法不需要在现有模型这样的数据集上进行训练。相反,它只利用观察到的单一模糊图像中包含的信息。值得注意的是,本文中“零炮”的定义不同于分类场景中使用的传统零炮学习。简言之,一般的零拍学习通常是指在数据集上训练模型,然后使用该模型预测看不见的类别,而我们的零拍设置只指使用观察到的单个图像,不需要额外的数据集。这两个差异使我们的方法避免了劳动密集型数据收集和使用合成模糊图像处理真实世界图像的域转移问题。

我们的方法利用了暗通道的特性,将其最小化为JNet的损失。第二,观察和工作机制完全不同。根据倾角的性质,双倾角采用了三个类似于倾角的U形网状网络。二次探空将三个随机噪声作为输入输入输入到网络中,以匹配干净的图像、传输图和全球航灯。而ZID是基于层解纠缠的思想,并假设霾是一种特殊类型的与内容无关的噪声。基于这些假设,我们的方法采用了一个变分模块,将模糊图像直接送入三个子网络,以分离不同的层。

损失函数:

 LRec是输入模糊图像x和重建模糊图像I(x)之间的重建损失,LA是估计大气光的损失,LJ是基于统计的估计无模糊图像的损失,LReg是子网络输出的正则化项。

 由于全球大气光与图像内容无关,因此假设图像内容是从高斯分布中潜在采样的。因此,为了实现我们的A-Net,我们采用了一种变分自动编码器[36]结构。为了学习潜在的高斯模型,中间块将通过最小化等式(6),即z,将编码器的输出(即z)转换为高斯分布的平均值(μz)和方差(σ2z)→ {μz,σ2z}。借助于重参数化技巧,我们通过对高斯分布进行重采样获得了潜在代码的重构,即N(μz,σ2z)→ ˆz。之后,将ˆz馈入解码器,通过最小化等式(5)获得解纠缠大气光fa(x)。

LK L是Kullback-Leibler散度,它加强了潜变量z∈ [μz,σ2z]符合正态高斯分布N(0,I)。要享受使用标准随机梯度方法进行端到端优化,

 

### 回答1: "图像去雾变换器与透射感知的3D位置嵌入"是一种用于图像去雾的算法模型。图像去雾是指通过降低或消除图像中的雾霾、模糊和变暗等现象,使得图像更加清晰和真实。这个模型的主要思想是结合了图像去雾和传输感知技术,并加入了3D位置嵌入的方法。 首先,这个模型通过传输感知技术来估计图像中的散射波分量和大气光照。传输感知是指通过分析图像中的传输特性,来恢复出原始场景的方法。这个模型会分析图像中的散射波分量和大气光照,从而能够更准确地进行去雾操作。 其次,模型还采用了3D位置嵌入的方法来提高去雾效果。3D位置嵌入是指将图像中的像素点的位置信息加入到模型中,从而能够更好地理解图像中的深度和空间结构。通过引入3D位置嵌入,模型能够更好地处理图像中的近红外图像和多层次场景,提高去雾效果的精度和稳定性。 总的来说,"图像去雾变换器与透射感知的3D位置嵌入"是一种应用传输感知和3D位置嵌入技术的图像去雾算法。它能够更准确地估计图像中的散射波分量和大气光照,同时加入了3D位置嵌入的方法提高去雾效果。这个模型在图像去雾领域有着较好的应用前景,可以帮助提高图像的质量和真实感。 ### 回答2: image dehazing transformer with transmission-aware 3d position embedding是一种用于图像去雾的转换器模型,它利用传输感知的三维位置嵌入来改善图像的可见度。 这个模型主要包括两个关键部分:转换器和传输感知的三维位置嵌入。 转换器是一个神经网络模型,它能够学习图像去雾的特征表示。通过对输入图像进行编码和解码,转换器能够自动地从雾化图像中提取出有用的信息。它通过多层自注意机制来捕捉图像中不同区域的关联性,并通过残差连接来保留原始图像的细节。 传输感知的三维位置嵌入是指将每个像素点的位置信息嵌入到模型中,以更好地理解图像中的深度和空间关系。这种嵌入技术可以帮助模型更准确地分析图像中光线的传输过程,从而改善图像去雾的效果。 通过将转换器和传输感知的三维位置嵌入相结合,该模型可以更好地理解图像中的物体位置、深度和光线传输情况,并根据这些信息进行有效的图像去雾处理。它能够减少雾化图像中的噪声和模糊,并提高图像的细节和清晰度。 总之,image dehazing transformer with transmission-aware 3d position embedding是一种结合了转换器和传输感知的三维位置嵌入的模型,用于改善图像去雾效果。它能够有效地提升图像的细节和可见度,为图像处理领域带来了新的突破。 ### 回答3: image dehazing transformer with transmission-aware 3d position embedding是一种用于图像去雾的转换模型,它结合了传输感知的3D位置嵌入技术。 去雾是指通过处理雾霾造成的图像模糊和对比度不足,使图像恢复清晰和细节丰富。传统的去雾方法通常使用图像处理技术,如滤波和增强对比度等,但效果可能有限。 image dehazing transformer with transmission-aware 3d position embedding利用了transformer模型,这是一种基于自注意力机制的神经网络模型。通过自注意力机制,模型能够学习全局和局部的图像特征。同时,模型还引入了传输感知的3D位置嵌入技术。 传输感知的3D位置嵌入技术可以捕捉到雾霾图像中物体的深度和位置信息。通过将这些信息与图像特征融合,模型能够更准确地理解图像中不同物体的投射和透射过程,从而更好地去除雾霾。这种技术可以提高模型对场景深度的感知和图像恢复的精度。 综上所述,image dehazing transformer with transmission-aware 3d position embedding是一种结合了transformer模型和传输感知的3D位置嵌入技术的图像去雾方法。它能够通过学习全局和局部的图像特征,并结合深度和位置信息,更准确地去除雾霾,恢复清晰的图像。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值