数学期望相关(有新发现会补充)

广义定义:一次随机抽样中所期望的某随机变量的取值。

数学定义:

1.离散型

设离散型随机变量X的分布为P\{X=x_k\}=p_k \ \ k=1,2,... 若级数\sum _{k=1}^{\infty }|x_k|\cdot p_k<+\infty 则记E(X)=\sum _{k=1}^{\infty }x_k\cdot p_k。E(X)为随机变量的数学期望。

小于正无穷时为了保证与求和次序无关,若等于正无穷,则期望不存在。

2.连续型

X为连续的随机变量,其分布函数为F(x),若\int_{-\infty }^{\infty }|x|\cdot f(x)<+\infty,记E(X)=\int_{-\infty }^{\infty }X\cdot f(x)dx,称E(X)为随机变量X的数学期望。

分布函数(英文Cumulative Distribution Function, 简称CDF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。 分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。概率分布函数和概率密度函数,我认为的分布函数就是离散的概率函数,对于每个x都有相对应的概率值。而概率密度函数就是连续的概率值函数。  

期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)

例如,掷一枚公平的六面骰子,其每次“点数”的期望值是3.5,计算如下:

不过如上所说明的,3.5虽是“点数”的期望值,但却不属于可能结果中的任一个,没有可能掷出此点数。

期望值并不等同于均值,但将多个均值多次求均值就会无限接近期望。

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值