阅读记录:SimKGC: Simple Contrastive Knowledge Graph Completion withPre-trained Language Models

期刊:Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

一、介绍

现有的知识图谱补全(KGC)方法可以分为两类:基于嵌入的方法和基于文本的方法。

基于嵌入的方法将每个实体和关系映射到低维向量,而不使用任何辅助信息。例如:TransE (Bordes et al., 2013)、TransH (Wang et al., 2014)、RotatE (Sun et al., 2019b) 和 TuckER (Balazevic et al., 2019) 等。

基于文本的方法结合了用于实体表示学习的可用文本,因为可以访问额外的输入信息,直观上应该是要优于基于嵌入的方法的,事实上是落后的。

本文假设是因为对比学习的效率低下,是导致这种性能下降的关键问题。引入三种负采样:in-batch negatives, pre-batch negatives, and self-negatives.采用双编码器而不是交叉编码器架构,可以通过使用更大的batch-size来增加批内负采样的数量。先前批次的向量被存储充当批前负采样(pre-batch negatives)。另外,挖掘强负采样有利于对比学习。论文表示头部实体本身可以充当强负采样,称之为“self-negatives”。

结果可使得,负样本量增加到数千的规模,并将损失函数从margin-based ranking loss更改为 InfoNCE,这可以使模型专注于强负样本。

基于文本的KGC的一个优点就是支持归纳实体表征学习。在训练过程中看不到的实体仍然可以进行适当的建模,而基于嵌入的方法(例如 TransE)只能在转导设置(transductive setting)下进行推理。如果通过图中的短路径连接,则两个实体更有可能相关。根据经验发现基于文本的模型严重依赖语义匹配,并在某种程度上忽略了这种拓扑偏差。通过提高头实体的 k 跳邻居的分数,提出了一种简单的重新排名策略。

二、方法

2.1 记号定义

本文定义标记不变,KGC的链接预测任务是在给定不完整的G的情况下推断缺失的三元组。在广泛采用的实体排名评估协议下,尾部实体预测(h,r,?)需要对给定h和r的所有实体进行排名,类似与头实体预测(?,r,t)。另添加一个逆三元组(t,r^{-1},h),其中r^{-1}是r的逆关系。基于这种重新表述,只需要处理尾部实体预测问题.

2.2 模型架构

SimKGC 采用双编码器架构。两个编码器使用相同的预训练语言模型进行初始化,但不共享参数。给定一个三元组 (h,r,t),第一个编码器BERT_{hr}用于计算头实体 h 的关系感知嵌入。我们首先将实体 h 和关系 r 的文本

### 关于Contrastive Language-Image Pre-training (CLIP) 的论文下载与阅读 #### CLIP的核心概念 CLIP(Contrastive Language-Image Pre-training)是一种基于对比学习的多模态模型,其主要目标是通过大量的文本-图像对来训练一个能够理解视觉和语言之间关系的通用表示[^3]。该模型利用对比学习的优势,在预训练过程中无需精确预测某个特定的文本描述,而是专注于判断哪些文本更可能与给定的图像相关联[^5]。 #### 论文获取途径 CLIP的相关研究由OpenAI团队完成,原始论文名为《Learning Transferable Visual Models From Natural Language Supervision》。可以通过以下几种方式进行下载: 1. **官方链接**: OpenAI通常会公开发布其研究成果,可以直接访问OpenAI官网并搜索“CLIP”或“Learning Transferable Visual Models From Natural Language Supervision”,找到PDF版本进行下载。 2. **学术资源平台**: 使用Google Scholar或其他学术搜索引擎输入关键词“Contrastive Language-Image Pre-training”或“CLIP paper”。这些平台上可能会提供免费的PDF下载选项。 3. **第三方存储库**: 如果无法直接从官方网站获得,则可以尝试在arXiv上查找是否有上传的版本。大多数机器学习领域的最新进展都会第一时间发布在此处。 #### 阅读建议 为了更好地理解和吸收CLIP的内容,推荐按照如下结构展开阅读- **摘要部分**:快速了解整个工作的背景意义以及取得的主要成果。 - **方法论章节**:重点掌握如何构建损失函数实现对比学习机制;具体到正样本负样例的选择策略等方面[^4]。 - **实验分析**:注意作者是如何验证零样本迁移能力的有效性的,并且观察跨多种下游任务的表现情况。 以下是Python代码片段用于加载已发布的CLIP模型作为示例: ```python import clip import torch device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) image = preprocess(Image.open("example_image.jpg")).unsqueeze(0).to(device) text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() print(f"Label probs: {probs}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值