机器学习在雷达信号分选技术上的应用包括信号分离、确定脉冲参数、形成单部雷达脉冲序列,然后针对雷达目标识别进行分类并划分威胁程度等。在一维距离像识别过程中包括去噪和雷达目标型号识别。该论文(学习内容)重点研究了机器学习中的聚类技术以及目标识别技术,以满足我国的电子对抗等领域的需求。
电子侦察是指通过雷达发射信号去搜索和截获敌方的电子系统发出的电磁辐射信息以获得对方的相关战术或设备信息,及时作出相对应的防御策略或发出干扰信息。雷达信号分选技术、识别技术是雷达侦查信号处理系统的关键环节。
雷达信号分选精度是判断一个雷达信号处理系统性能的重要指标。
雷达信号处理系统得到天线截获的混叠信号然后将进行去交错,将不同雷达的脉冲序列分离,并对脉冲序列的调制方式进行识别,进一步对雷达辐射源型号进行识别,然后做出威胁评估等级再做相应的预防措施和干扰。
雷达高分辨一维距离像(HRRP)指雷达信号发射后通过散射中心向后散射在径向方向上占据多个连续的距离单元,通过回波信号矢量叠加形成的投影分布。
目前人们将人工智能和机器学习加入到雷达工作模式识别中以提高识别正确率。最常用的两种机器学习识别法一个是基于参数估计的雷达辐射源及工作模式识别,一个是基于句法的雷达辐射源和工作模式识别。
(1)参数估计法识别雷达工作模式
(2)句法识别雷达工作模式
基础知识介绍
雷达信号分选技术是指将这些按到达时间组成的交叠脉冲流进行去噪、去干扰并分离出每部雷达的信号脉冲流,对每部雷达根据其得到的脉冲流来获得该雷达的相关参数的一个过程。
雷达信号脉内参数( PDW):
1、到达时间TOA
一个雷达脉冲有上升沿和下降
基于机器学习的雷达信号分选和目标识别(论文阅读学习记录—持续记录)
最新推荐文章于 2025-04-11 11:42:52 发布