空间分析之机器学习预测性能评价

本文通过实例展示了如何使用Python的sklearn库,对随机森林、支持向量机、K近邻回归和广义线性回归在相同测试数据上的性能进行评价,重点关注R²、RMSE、MAE和偏误。通过计算平均值和标准差,为选择合适的机器学习算法提供指导。
摘要由CSDN通过智能技术生成

机器学习作为新兴领域,已经逐渐渗透进我们的生活之中。不论是在传统地学、定量遥感、还是遥感图像分类和目标识别中,机器学习都有着极为广泛的应用。然而机器学习方法的多样化也令人很难评判方法的优劣,针对不同的应用场景,不用方法也表现出差异。因此,本文将对随机森林、支持向量机、K最邻近回归和广义线性回归为例,以相同的测试数据来评价上述四种机器学习方法的优劣,并使用R2(决定系数)、RMSE(均方根误差)、MAE(平均绝对误差)和bias(偏差)来做性能评价。

    预测及评价过程均基于Python3和机器学习扩展模块sklearn实现,具体实现如下:

  • 导入相关扩展包
import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.linear_model import LinearRegression

from sklearn import svm

from sklearn import metrics
  • 数据导入
df = pd.DataFrame(pd.read_csv("testpoint.csv"))

x = df.iloc[:, 0:-1].values

y = df.iloc[:, 3].values

其中测试数据格式如下:

  • 训练数据选择

由于测试数据量较大,这里为了节省训练时间,选择其中10%作为训练集。

x_train, x_test, y_train, y_test = train_test_split(X,y,test_size=0.1,random_state=None)
  • 训练并预测结果
# 归一化测试数据

sc = StandardScaler()

x_train = sc.fit_transform(X_train)

x_test = sc.transform(X_test)

# 导入模型并设置参数

rf = RandomForestRegressor(n_estimators=100, random_state=None, max_features='auto', max_depth=5,min_samples_split=15, min_samples_leaf=8, bootstrap=True, oob_score=True)

sr = svm.SVR(kernel='rbf', C=1000, gamma=0.1)

kn = KNeighborsRegressor(n_neighbors=10, weights='distance',algorithm='ball_tree')

lr = LinearRegression()

np.set_printoptions(threshold=np.inf)

# 模型训练

rf.fit(X_train, y_train)

sr.fit(X_train, y_train)

kn.fit(X_train, y_train)

lr.fit(X_train, y_train)

# 结果预测

y_pred_rf = rf.predict(X_test)

y_pred_sr = sr.predict(X_test)

y_pred_kn = kn.predict(X_test)

y_pred_lr = lr.predict(X_test)
  • 计算预测性能

在得到预测结果之后,我们利用预测值和真实值来计算各模型的预测性能,具体实现如下:

R2 = [metrics.r2_score(y_test, y_pred_rf), metrics.r2_score(y_test, y_pred_sr),

        metrics.r2_score(y_test, y_pred_kn), metrics.r2_score(y_test, y_pred_lr)]

RMSE = [np.sqrt(metrics.mean_squared_error(y_test, y_pred_rf)),

        np.sqrt(metrics.mean_squared_error(y_test, y_pred_sr)),

        np.sqrt(metrics.mean_squared_error(y_test, y_pred_kn)),

        np.sqrt(metrics.mean_squared_error(y_test, y_pred_lr))]

MAE = [metrics.mean_absolute_error(y_test, y_pred_rf),

      metrics.mean_absolute_error(y_test,

      y_pred_sr),metrics.mean_absolute_error(y_test, y_pred_kn),

      metrics.mean_absolute_error(y_test, y_pred_lr)]

BIAS = [np.mean(y_pred_rf - y_test), np.mean(y_pred_sr - y_test),

      np.mean(y_pred_kn - y_test),np.mean(y_pred_lr - y_test)]

在得到每个测试数据的评价结果后,计算其平均值和标准差,得到最终的评价结果,具体操作如下:

# 计算平均值

r2_mean = np.mean(r2, axis=0)

rmse_mean = np.mean(rmse, axis=0)

mae_mean = np.mean(mae, axis=0)

bias_mean = np.mean(bias, axis=0)

# 计算标准差

r2_std = np.std(r2, axis=0)

rmse_std = np.std(rmse, axis=0)

mae_std = np.std(mae, axis=0)

bias_std = np.std(bias, axis=0)
  • 评价结果

在评价结果计算后,数据结果:

    如何选择机器学习算法、选择哪一个算法以及算法建模时该注意哪些问题,是学术及工程中的一大难题。总之,选择哪一个算法必须要适用于你自己的问题,这就要求选择正确的机器学习任务。但很多情况下好的数据却要优于好的算法,优良特征的正确选择对算法来说更有意义,但只有了解每个机器算法的原理及优缺点,才能根据不同的机器学习算法做相应的特征选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值