分治法——线性时间选择

算法思想:利用快速排序的方法将a[p:r]被划分成两个子数组a[p:i]和a[i+1:r],使a[p:i]中的每个元素都不大于a[i+1:r]中每个元素。接着算法计算子数组a[p:i]中元素个数j。如果k≤j,则第k小的数落在左区间,否则落在右区间,直到k=j时,找到第k小的数。

对于有重复数字的无法解决。其实维护小顶堆感觉更好,无论时间复杂度还是代码复杂程度。

int Partiotion(int a[], int p, int r) {
	int i = p;
	int j = r + 1;
	int x = a[p];//划分的基准
	while (true) {
		while (a[++i] < x && i < r);//找到第一个比基准大的元素
		while (a[--j] > x);//找到比基准大的元素
		if (i >= j) {
			break;
		}
		swap(a[i], a[j]);//交换两个位置不正确的元素
	}
	a[p] = a[j];
	a[j] = x;
	return j;
}
int RandomizedPartition(int a[], int p, int r) {//随机选择基准优化快速排序,区间对称性
	int i = rand() % (p - r + 1) + p;
	swap(a[i], a[p]);
	return Partiotion(a, p, r);
}
int RandomizedSelect(int a[], int low, int high, int k) {
	if (low == high) {
		return a[low];
	}
	int i = Partiotion(a, low, high);
	int j = i - low + 1;
	if (k <= j) {
		return RandomizedSelect(a, low, i, k);
	}
	else {
		return RandomizedSelect(a, low+1, high, k-j);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值