Forward-Looking Super-Resolution Imaging Based on Echo Denoising and Noise Weighting at Low SNR
1. 研究目标与实际问题
1.1 研究目标
论文旨在解决前视雷达成像(Forward-Looking Imaging)在低信噪比(Low SNR)条件下,传统压缩感知(Compressed Sensing, CS)方法因噪声干扰导致虚假目标生成和成像质量下降的问题。具体目标包括:
- 提出一种结合复数变分模态分解(Complex Variational Mode Decomposition, CVMD)和噪声加权(Noise Weighting)的鲁棒成像方法(CVMD-WCS),以提升低SNR条件下的成像性能;
- 通过仿真和实测数据验证方法的有效性。
1.2 实际问题与产业意义
前视雷达在自动驾驶、导弹制导等领域有广泛应用,但受限于天线尺寸和平台约束,传统方法的方位分辨率不足。
产业意义在于:
- 军事领域:提升导弹和无人机平台的成像精度,增强目标识别能力;
- 民用领域:推动自动驾驶中障碍物检测和地形测绘的可靠性。
2. 创新方法:CVMD-WCS的提出与优势
2.1 方法框架
论文提出CVMD-WCS方法,包含两个核心步骤:
- 复数变分模态分解(CVMD):预处理回波信号以抑制噪声;
- 噪声加权L1范数优化(Weighted CS, WCS):在CS模型中通过加权策略区分目标和噪声。
2.1.1 复数变分模态分解(CVMD)
传统VMD的局限性:
VMD(Variational Mode Decomposition)仅适用于实数信号,而雷达回波为复数信号。直接应用VMD会导致负频率分量丢失,如图2所示.
CVMD的改进:
- 频谱分割与对称化:将复数信号的频谱分为正负频率部分( S + ( W ) S_+(W) S+(W)和 S − ( W ) S_-(W) S−(W)),分别映射为对称频谱( S 1 ( W ) S_1(W) S1(W)和 S 2 ( W ) S_2(W) S2(W)),使其符合实数信号特性(图3);
- 双通道VMD处理:对 S 1 ( t ) S_1(t) S1(t)和