R-CNN,SPP-NET, Fast-R-CNN,Faster-R-CNN, YOLO, SSD, R-FCN学习总结(持续更新)

本文总结了R-CNN系列(包括R-CNN, Fast R-CNN, Faster R-CNN)以及YOLO, SSD等目标检测技术。R-CNN家族从最初的区域提名到端到端优化,逐步提升了效率和准确性。文章探讨了RoI Pooling、RPN等关键概念,并指出了各方法的优缺点。" 108743017,9030837,Mind+与掌控板实验:光控灯、声控灯、语音识别与IoT MQTT通讯,"['物联网', '自然语言处理', '图形化编程']
摘要由CSDN通过智能技术生成

R-CNN这个领域目前研究非常活跃,先后出现了R-CNN,SPP-net,Fast R-CNN,Faster R-CNNR-FCNYOLOSSD等研究,Ross Girshick(rbg大神)作为这个领域的开山鼻祖总是神一样的存在,R-CNN、Fast R-CNN、Faster R-CNN、YOLO都和他有关。这些创新的工作其实很多时候是把一些传统视觉领域的方法和深度学习结合起来了,比如选择性搜索(Selective Search)和图像金字塔(Pyramid)等。

深度学习相关的目标检测方法也可以大致分为两派:

  • 基于区域提名的,如R-CNN, SPP-net, Fast R-CNN, Faster R-CNN, R-FCN;
  • 端到端(End-to-End)无需区域提名的,如YOLO, SSD。

发展历程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值