算法导论 — 思考题15-9 字符串拆分

字符串拆分)某种字符串处理语言允许程序员将一个字符串拆分为两段。由于此操作需要复制字符串,因此要花费 n n n个时间单位来将一个 n n n个字符的字符串拆分为两段。假定一个程序员希望将一个字符串拆分为多段,拆分的顺序会影响所花费的时间。例如,假定这个程序员希望将一个20个字符的字符串在第2个、第8个及第10个字符后进行拆分(字符由左至右,从1开始升序编号)。如果她按由左至右的顺序进行拆分,则第一次拆分花费20位时间单位,第二次拆分花费18个时间单位(在第8个字符处拆分字符串3~20),而第三次拆分花费12个时间单位。共花费50个时间单位。但如果她按由右至左的顺序拆分,第一次拆分花费20个时间单位,第二次拆分花费10个时间单位,第三次拆分花费8个时间单位,共花费38个时间单位。还可以按其他顺序,比如,她可以首先在第8个字符处进行拆分(时间20),接着在左边一段第2个字符处进行拆分(时间8),最后在右边一段第10个字符处进行拆分(时间12),总时间为40。
  设计算法,对给定的拆分位置,确定最小代价的拆分顺序。更形式化地,给定一个 n n n个字符的字符串 S S S和一个保存 m m m个拆分点的数组 L [ 1.. m ] L[1..m] L[1..m],计算拆分的最小代价,以及最优拆分顺序。
  
  如果整个字符串 S [ 1.. n ] S[1..n] S[1..n]在第 L [ i ] L[i] L[i]个字符 ( 1 ≤ i ≤ m ) (1 ≤ i ≤ m) (1im)处被拆分,那么拆分下来的两个子串分别为 S [ 1.. L [ i ] ] S[1..L[i]] S[1..L[i]] S [ L [ i ] + 1.. n ] S[L[i]+1..n] S[L[i]+1..n]。假设一个子串是经由拆分得到的,它的左端是从原字符串的 L [ i ] L[i] L[i]处拆分,它的右端是从原字符串的 L [ j ] L[j] L[j]处拆分,其中 1 ≤ i &lt; j ≤ m 1 ≤ i &lt; j ≤ m 1i<jm。那么,这个子串实际上为 S [ L [ i ] + 1.. L [ j ] ] S[L[i]+1..L[j]] S[L[i]+1..L[j]],并且这个子串的可选拆分点为 L [ i + 1.. j − 1 ] L[i+1..j-1] L[i+1..j1]。我们要对这个子串再行拆分,用 s p [ i , j ] sp[i, j] sp[i,j]表示对这个子串首次拆分的拆分点在 L L L中的索引,并用 c o s t [ i , j ] cost[i, j] cost[i,j]表示对这个子串进行完全拆分所花费的时间。
  上文提到, i i i j j j的取值范围为 1 ≤ i &lt; j ≤ m 1 ≤ i &lt; j ≤ m 1i<jm。为解决整个问题,需要对 i i i j j j的取值扩展一下。当 i i i取值为 0 0 0时,表示的子串为 S [ 1.. L [ j ] ] S[1..L[j]] S[1..L[j]];当 j j j取值为 m + 1 m+1 m+1时,表示的子串为 S [ L [ i ] + 1.. n ] S[L[i]+1..n] S[L[i]+1..n]。显然,当 i = 0 i = 0 i=0并且 j = m + 1 j = m+1 j=m+1时,表示的子串实际上就是完整的字符串 S [ 1.. n ] S[1..n] S[1..n]。我们最终要求解的就是 i = 0 i = 0 i=0并且 j = m + 1 j = m+1 j=m+1的情况。相应地,我们要将拆分点数组 L [ 1.. m ] L[1..m] L[1..m]也扩展一下,扩展为 L [ 0.. m + 1 ] L[0..m+1] L[0..m+1],其中 L [ 0 ] = 0 L[0] = 0 L[0]=0 L [ m + 1 ] = n L[m+1] = n L[m+1]=n,其余数值保持不变。
  我们现在求解一个子串的 c o s t [ i , j ] cost[i, j] cost[i,j]。这个子串的长度为 L [ j ] − L [ i ] L[j]-L[i] L[j]L[i],可选拆分点为 L [ i + 1.. j − 1 ] L[i+1..j-1] L[i+1..j1]。假设从 L [ k ] L[k] L[k] ( i &lt; k &lt; j ) (i &lt; k &lt; j) (i<k<j)进行拆分,那么 c o s t [ i , j ] = L [ j ] − L [ i ] + c o s t [ i , k ] + c o s t [ k , j ] cost[i, j] = L[j] - L[i] + cost[i, k] + cost[k, j] cost[i,j]=L[j]L[i]+cost[i,k]+cost[k,j]。我们遍历所有 k k k的取值 i &lt; k &lt; j i &lt; k &lt; j i<k<j,从中选取花费时间最小的。于是可以得到以下递归式。
  在这里插入图片描述
  在这里插入图片描述
  该算法与矩阵链乘法问题相似,它的时间复杂度也为 O ( m 3 ) O(m^3) O(m3)
  
  本题相关的code链接。
  https://github.com/yangtzhou2012/Introduction_to_Algorithms_3rd/tree/master/Chapter15/Problems/Problem_15-9

<think>嗯,用户现在问的是怎么学LeetCode。首先,我需要回想之前的对话历史。用户之前问的是当“奋斗”不再是唯一信仰,如何构建多元化的生存意义,而我的回答比较抽象,涉及哲学和技术层面的分析。现在用户转向了一个非常具体的问题,关于学习LeetCode的方法。这可能意味着用户当前的学习或职业需求,比如准备技术面试,特别是算法和数据结构方面。 接下来,我需要考虑用户可能的背景。用户可能是一个准备求职的学生,或者是希望提升编程能力的开发者。学习LeetCode通常与求职准备密切相关,尤其是针对科技公司的技术面试。因此,用户的需求可能不仅仅是学习LeetCode本身,而是如何高效地通过LeetCode准备面试,提升算法能力。 用户的问题虽然简短,但需要详细的策略和方法。我需要提供一个结构化的学习计划,涵盖从基础到高级的步骤,可能包括如何选择题目、如何分析问题、如何练习以及如何总结。此外,用户可能还需要一些资源推荐和学习技巧,比如间管理、刷题顺序、以及如何利用社区资源等。 另外,用户可能有不同的学习阶段。有的可能是零基础,需要从数据结构和算法开始学起;有的可能有一定基础,但需要系统化地提升。因此,回答需要兼顾不同层次的学习者,给出分阶段的建议。 还要考虑到用户可能的痛点,比如题目太多无从下手,遇到难题无法解决,或者缺乏坚持的动力。因此,除了具体的学习步骤,可能还需要一些激励方法或工具推荐,比如刷题打卡群、笔记方法、复盘技巧等。 另外,结合之前的对话,用户对抽象概念感兴趣,可能更倾向于结构清晰、逻辑严谨的回答,同喜欢一些类比或方法论,比如之前提到的生态位意识、间维度等。因此,在回答中可能需要将学习LeetCode的方法论与系统化的框架结合起来,帮助用户建立全面的学习路径。 最后,需要确保回答的实用性和可操作性,避免过于理论化。需要具体到步骤、资源、技巧,以及如何应对常见问题,比如如何分析间复杂度和空间复杂度,如何避免常见错误,如何模拟面试环境等。 总结一下,回答需要涵盖以下几个部分: 1. 基础准备:数据结构和算法的基础知识。 2. 分阶段学习:从简单到困难,分阶段练习。 3. 刷题技巧:如何有效刷题,包括分类练习、手写代码、复盘等。 4. 资源推荐:书籍、在线资源、刷题顺序。 5. 间管理和心态调整:如何制定计划,保持动力。 6. 模拟面试和实战应用:将练习应用到实际面试中。 同,可能需要提醒用户不要盲目追求数量,而应注重理解和举一反三,培养解决问题的思维方式。此外,结合之前的回答风格,可以使用一些类比或结构化的框架,比如“三步拆解法”、“模块化训练”等,帮助用户更好地理解和记忆学习策略。</think>学习 LeetCode 是一个系统性工程,需要结合**知识积累、思维训练和实战技巧**。以下是经过验证的实践框架,适用于不同基础的学习者: --- ### 一、筑基阶段:构建算法知识树 1. **数据结构与算法核心模块** - **优先级排序**:数组/链表 → 栈/队列 → 哈希表 → 二叉树 → 堆 → 图 - **重点突破**: - 二分查找(理解循环不变量) - 递归与分治(掌握树形分解思维) - 动态规划(从暴力递归到状态转移方程) *推荐资源:《算法导论》关键章节 +《代码随想录》配图解析* 2. **复杂度分析实操** - 用数学归纳法推导递归间复杂度(如斐波那契数列的指数级复杂度) - 空间换间案例:哈希表降低查询复杂度(O(n)→O(1)) --- ### 二、模块化训练:建立解题反射弧 1. **分类突破法**(建议按标签刷题) - **滑动窗口**:从「无重复字符的最长子串」体会窗口收缩条件 - **双指针**:通过「盛最多水的容器」理解收敛策略 - **DFS/BFS**:用「岛屿数量」掌握遍历模板的变形 *每日专项练习:同类型题目连续刷3-5道,形成肌肉记忆* 2. **三步拆解法** - **步骤化思考**: 1. 将问题转化为数学模型(如将字符串匹配抽象为状态机) 2. 识别算法范式(贪心/动态规划/回溯等) 3. 设计测试用例(边界值、特殊场景) - **案例**:解「接雨水」,先画图分析柱状结构,再选择单调栈或双指针策略 --- ### 三、高效刷题策略 1. **结构化笔记法** ```markdown ## 题目:单词拆分(139- 关键点:字典查询优化 → 哈希表预处理 - 易错点:dp[i]的定义是前i个字符可拆分 - 变式思考:如果要求具体拆分方案?→ 回溯+记忆化 ``` 2. **错题本管理** - 按错误类型分类: - 逻辑漏洞(如循环条件错误) - 知识盲区(如不了解拓扑排序应用场景) - 工程思维缺失(如未做输入校验导致越界) 3. **间管理矩阵** | 熟练度 | 每日分配 | |---|---| | 新题型 | 2道(深度思考) | | 薄弱点 | 3道(专项突破) | | 已掌握 | 1道(速度训练) | --- ### 四、突破瓶颈期的进阶技巧 1. **降维打击法** - 遇到困难题- 先写暴力解法(如全排列用回溯) - 逐步添加剪枝条件 - 对比最优解的间/空间取舍 2. **模拟面试环境** - 使用白板工具手写代码(如Excalidraw) - 设置45分钟倒计(含测试用例设计) - 录音回放检查表达逻辑 3. **思维可视化工具** - 绘制递归树(如斐波那契数列的重复计算节点) - 动态规划填表法(用颜色标注状态转移路径) --- ### 五、资源组合拳 1. **经典题库路径** - 新手路线:LeetCode热题HOT 100 →《剑指Offer》 - 进阶路线:每日一题(连续90天) → 周赛复盘 2. **辅助工具包** - 调试神器:Python Tutor可视化执行 - 复杂度计算:Big-O Cheat Sheet - 模式识别:LeetCode Patterns(Github仓库) --- ### 六、认知升级:从解题到工程思维 1. **现实映射训练** - 将算法问题还原到真实场景: - 「会议室安排」→ 实际日程调度系统设计 - 「最短路径」→ 物流配送路径优化 2. **开源项目实战** - 在GitHub找算法密集型项目(如数据库索引实现) - 对比理论解法与实际工程实现的差异 --- **关键提醒**:刷300题不如精刷100题。建议每周做一次「深度复盘」:选择5道旧题,尝试用不同解法重写(如将递归改迭代),并撰写对比分析报告。这种刻意练习比单纯追求数量更有效。当你能向非技术人员清晰解释KMP算法的设计思想,说明真正掌握了算法本质。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值