算法导论 — 2.3 设计算法

笔记

算法设计方法有多种。插入排序使用了增量法:在排序子数组 A [ 1.. j − 1 ] A[1..j-1] A[1..j1]后,将单个元素 A [ j ] A[j] A[j]插入子数组的适当位置,产生排序好的子数组 A [ 1.. j ] A[1..j] A[1..j]
  本节采用另一种方法,即分治法,同样来完成数组的排序。总的来说,分治法的思想是:将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后再合并这些子问题的解来建立原问题的解。典型的分治法分为三个步骤:
  1) 分解:将原问题分为若干子问题,这些子问题是原问题的规模较小的实例。
  2) 求解:递归地求解各子问题。若子问题的规模足够小,可直接求解,不用递归。
  3) 合并:将这些子问题的解合并成原问题的解。
  用分治法来解决数组排序问题的算法叫做归并排序。该算法完全遵循分治法,也分为三个步骤:
  1) 分解:将待排序的 n n n个元素的序列分成各具 n / 2 n/2 n/2个元素的两个子序列。
  2) 求解:递归地排序两个子序列。
  3) 合并:合并两个已排序的子序列以产生排好序的序列。
  归并排序的关键操作是第3)步合并。以下是合并过程的伪代码。
  在这里插入图片描述
  执行MERGE过程,前提是子数组 A [ p . . q ] A[p..q] A[p..q] A [ q + 1.. r ] A[q+1..r] A[q+1..r]已经排好序。其基本思想是:每次循环迭代,比较两个子数组中各自的最小值,取其中较小者放入合并的数组中;迭代直到两个子数组都变成空为止。合并之后的子数组 A [ p . . r ] A[p..r] A[p..r]也已经排好序了。MERGE过程需要 Θ ( n ) Θ(n) Θ(n)的时间,其中 n = r − p + 1 n = r-p+1 n=rp+1是待合并的元素的总数。
  下面是归并排序的伪代码。
  在这里插入图片描述
  从伪代码可以看到,MERGE-SORT就是一个典型的分治算法。先递归排序左子数组,再递归排序右子数组,再调用MERGE合并左右子数组。下图展示了归并排序在数组 &lt; 5 , 2 , 4 , 7 , 1 , 3 , 2 , 6 &gt; &lt;5, 2, 4, 7, 1, 3, 2, 6&gt; <5,2,4,7,1,3,2,6>上的执行过程。
  在这里插入图片描述
  下面我们来分析归并排序的运行时间。假设对 n n n个元素的数组进行归并排序的时间为 T ( n ) T(n) T(n)。归并排序先对两个规模为 n / 2 n/2 n/2的子数组递归排序,对每个子数组递归排序的时间为 T ( n / 2 ) T(n/2) T(n/2);然后合并两个排好序的子数组,这一过程的时间为 Θ ( n ) Θ(n) Θ(n)。根据以上分析,可以得到递归式 T ( n ) = 2 T ( n / 2 ) + Θ ( n ) T(n) = 2T(n/2) + Θ(n) T(n)=2T(n/2)+Θ(n)。初始情况是 n = 1 n = 1 n=1,即只有一个元素的数组,显然对只有一个元素的数组的排序时间是常数时间,即 T ( 1 ) = Θ ( 1 ) T(1) = Θ(1) T(1)=Θ(1)。综合以上分析,可以得到
  在这里插入图片描述
  求解这个递归式,得到 T ( n ) = Θ ( n l g n ) T(n) = Θ(n{\rm lg}n) T(n)=Θ(nlgn)

练习

2.3-1 使用图2-4作为模型,说明归并排序在数组 A = &lt; 3 , 41 , 52 , 26 , 38 , 57 , 9 , 49 &gt; A = &lt;3, 41, 52, 26, 38, 57, 9, 49&gt; A=<3,41,52,26,38,57,9,49>上的操作。
  
  在这里插入图片描述
  
2.3-2 重写过程MERGE,使之不使用哨兵,而是一旦数组 L L L R R R的所有元素均被复制回 A A A就立刻停止,然后把另一个数组的剩余部分复制回 A A A
  
  在这里插入图片描述
  
2.3-3 使用数学归纳法证明:当 n n n刚好是 2 2 2的幂时,以下递归式的解是 T ( n ) = n l g n T(n) = n{\rm lg}n T(n)=nlgn
  在这里插入图片描述
  
  初始情况 n = 2 n = 2 n=2 T ( 2 ) = 2 = 2 l g 2 T(2) = 2 = 2{\rm lg}2 T(2)=2=2lg2,等式 T ( n ) = n l g n T(n) = n{\rm lg}n T(n)=nlgn成立。
  现在假设等式对 n / 2 n/2 n/2成立,即 T ( n / 2 ) = ( n / 2 ) l g ( n / 2 ) T(n/2) = (n/2){\rm lg}(n/2) T(n/2)=(n/2)lg(n/2)。根据递归式, T ( n ) = 2 T ( n / 2 ) + n = 2 ( n / 2 ) l g ( n / 2 ) + n = n ( l g n − l g 2 ) + n = n ( l g n − 1 ) + n = n l g n T(n) = 2T(n/2) + n = 2(n/2){\rm lg}(n/2) + n = n({\rm lg}n - {\rm lg}2) + n = n({\rm lg}n - 1) + n = n {\rm lg}n T(n)=2T(n/2)+n=2(n/2)lg(n/2)+n=n(lgnlg2)+n=n(lgn1)+n=nlgn

2.3-4 我们可以把插入排序表示为如下的一个递归过程。为了排序 A [ 1.. n ] A[1..n] A[1..n],我们递归地排序 A [ 1.. n − 1 ] A[1..n-1] A[1..n1],然后把 A [ n ] A[n] A[n]插入已排序的数组 A [ 1.. n − 1 ] A[1..n-1] A[1..n1]。为插入排序的这个递归版本的最坏情况运行时间写一个递归式。
  
  排序 A [ 1.. n ] A[1 .. n] A[1..n]的时间分为两部分:1) 排序 A [ 1.. n − 1 ] A[1 .. n-1] A[1..n1]的时间 T ( n − 1 ) T(n-1) T(n1);2) 将 A [ n ] A[n] A[n]插入到已排序数组 A [ 1.. n − 1 ] A[1 .. n-1] A[1..n1]的时间 c ( n ) c(n) c(n)
  将 A [ n ] A[n] A[n]插入到已排序数组 A [ 1.. n − 1 ] A[1 .. n-1] A[1..n1],在最坏情况下需要做 n − 1 n-1 n1次比较,故最坏情况时间为 c ( n ) = Θ ( n ) c(n) = Θ(n) c(n)=Θ(n)
  将两部分时间相加得到递归式 T ( n ) = T ( n − 1 ) + Θ ( n ) T(n) = T(n-1) + Θ(n) T(n)=T(n1)+Θ(n)

2.3-5 回顾查找问题(参见练习2.1-3),注意到,如果序列 A A A已排好序,就可以将该序列的中点与 v v v进行比较。根据比较的结果,原序列中有一半就可以不用再做进一步的考虑了。二分查找算法重复这个过程,每次都将序列剩余部分的规模减半。为二分查找写出迭代或递归的伪代码。证明:二分查找的最坏情况运行时间为 Θ ( l g n ) Θ({\rm lg}n) Θ(lgn)
  
  在这里插入图片描述
  
2.3-6 注意到2.1节中的过程INSERTION-SORT的第5~7行的while循环采用一种线性查找来(反向)扫描已排好序的子数组 A [ 1.. j − 1 ] A[1..j-1] A[1..j1]。我们可以使用二分查找(参见练习2.3-5)来把插入排序的最坏情况总运行时间改进到 Θ ( n l g n ) Θ(n{\rm lg}n) Θ(nlgn)吗?
  
  用二分查找,可以在 Θ ( l g j ) Θ({\rm lg} j) Θ(lgj)时间之内找到 A [ j ] A[j] A[j]要插入的位置。但是要将 A [ j ] A[j] A[j]插入到合适的位置 k ( 1 ≤ k ≤ j ) k (1 ≤ k ≤ j) k(1kj),需要将 A [ k . . j − 1 ] A[k .. j-1] A[k..j1]中每个元素都向后移一个位置,在最坏情况下,这个过程仍然需要花费 Θ ( j ) Θ(j) Θ(j)时间。因此,引入二分查找不能把插入排序的最坏情况运行时间降到 Θ ( n l g n ) Θ(n{\rm lg}n) Θ(nlgn)

2.3-7 描述一个运行时间为 Θ ( n l g n ) Θ(n{\rm lg}n) Θ(nlgn)的算法,给定 n n n个整数的集合 S S S和另一个整数 x x x,该算法能确定 S S S中是否存在两个其和刚好为 x x x的元素。
  
  最简单的办法,考察数组中的所有元素对,看看其中是否有和为 x x x的。长度为 n n n的数组,一共有 n ( n − 1 ) n(n-1) n(n1)个元素对,因此这种方法的运行时间为 Θ ( n 2 ) Θ(n^2) Θ(n2)
  然而,如果数组已经排好序,可以利用数组的有序性来大大降低算法的运行时间。接下来的分析假定数组已经是有序的,即 A [ 1 ] ≤ A [ 2 ] ≤ … ≤ A [ n ] A[1] ≤ A[2] ≤ … ≤ A[n] A[1]A[2]A[n]
  先考察数组的首尾元素 A [ 1 ] A[1] A[1] A [ n ] A[n] A[n],根据它们的和,分为三种情况:
  ① A [ 1 ] + A [ n ] &lt; x A[1] + A[n] &lt; x A[1]+A[n]<x
  这种情况可以排除 A [ 1 ] A[1] A[1],问题转化为查找子数组 A [ 2.. n ] A[2..n] A[2..n]。因为 A [ 1 ] A[1] A[1]需要与一个比 A [ n ] A[n] A[n]更大的元素相加,它们的和才有可能等于 x x x,而 A [ n ] A[n] A[n]已经是数组中最大的元素,数组中没有比 A [ n ] A[n] A[n]更大的元素。
  ② A [ 1 ] + A [ n ] &gt; x A[1] + A[n] &gt; x A[1]+A[n]>x
  这种情况可以排除 A [ n ] A[n] A[n],问题转化为查找子数组 A [ 1.. n − 1 ] A[1..n-1] A[1..n1]。因为 A [ n ] A[n] A[n]需要与一个比 A [ 1 ] A[1] A[1]更小的元素相加,它们的和才有可能等于 x x x,而 A [ 1 ] A[1] A[1]已经是数组中最小的元素,数组中没有比 A [ 1 ] A[1] A[1]更小的元素。
  ③ A [ 1 ] + A [ n ] = x A[1] + A[n] = x A[1]+A[n]=x
  此时找到了两个和刚好为 x x x的元素。
  根据以上分析,该算法实际上是一个递归过程。每次递归,子数组的模规减 1 1 1。最坏情况是,当子数组的规模减到 1 1 1时(只有一个元素),还没有找到两个和为 x x x的元素,这说明数组 A A A中不存在和为 x x x的两个元素。显然,这一过程的运行时间为 Θ ( n ) Θ(n) Θ(n)
  对数组 A A A排序采用归并排序算法,时间复杂度为 Θ ( n l g n ) Θ(n{\rm lg}n) Θ(nlgn)。因此,整个算法的运行时间为 Θ ( n l g n ) Θ(n{\rm lg}n) Θ(nlgn)
  在这里插入图片描述
  
  本节代码链接:https://github.com/yangtzhou2012/Introduction_to_Algorithms_3rd/tree/master/Chapter02/Section_2.3

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值