【多任务模型】Progressive Layered Extraction: A Novel Multi-Task Learning Model for Personalized(RecSys‘20)

腾讯视频推荐团队采用多任务模型处理用户点击、分享、评论等行为,解决多目标间的负面转移问题。文章介绍了GCG(Customized Gate Control)和PLE(Progressive Layered Extraction)技术,以及优化方法,如考虑样本空间不一致性和动态任务权重调整,以提升多任务学习的效果。
摘要由CSDN通过智能技术生成

腾讯的视频推荐团队,建模的目标包含用户的多种不同的行为:点击,分享,评论等等。每次请求,候选的排序分根据公式计算:
 score  = p V T R w V T R × p V C R w V C R × p S H R w S H R × … × p C M R w C M × f (  video  l e n ) \text { score }=p V T R^{w V T R} \times p V C R^{w V C R} \times p S H R^{w S H R} \times \ldots \times p_{C M R}^{w C M} \times f(\text { video } l e n)  score =pVTRwVTR×pVCRwVCR×pSHRwSHR××pCMRwCM×f( video len)
其中w是超参,表示相对重要性

在这里插入图片描述

多目标之间经常会有比较复杂的关系,因此同时建模多目标经常会出现跷跷板的现象,即多个任务negative transfer的问题:

在这里插入图片描述

GCG

MMOE理论上存在一种可以自动选特征的最优情况,但这个情况依赖:1、gate能不能选出来;2、也依赖expert能不能产生多样性的特征(所有expert输出类似,无可奈何)。

因此本文提出的Customized Gate Control把这个问题变得简单了一些,把专家分为大同行和小同行,既有共享的expert们,每个task也有专门的expert们,难度小了一些。

在这里插入图片描述

这样EA只被taskA训,EB只被taskB训,至少可以保底。

input是x,任务k的输出是
y k ( x ) = t k ( g k ( x ) ) y^{k}(x)=t^{k}\left(g^{k}(x)\right) yk(x)=tk(g

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值