【超长序列建模】阿里ETA:《End-to-End User Behavior Retrieval in Click-Through Rate Prediction Model》

回顾SIM

在这里插入图片描述

之前我们说SIM是去向量检索,这一步性能优化的是基于建立离线索引,离线索引虽然加快了search的速度,但也带来了两个“不一致”的问题:

  • 目标不一致:GSU建立索引所使用的item embedding是另一个模型pre-trained(上图),它和当前精排模型可能会存在分布不一致,所表达的语义未必符合正在训练的精排模型的要求。
  • 更新频率不一致:工业界的推荐模型基本都是online learning(几分钟训一次的增量训练)。但是建立离线索引耗时费力,无法频繁更新(半个小时~半天)。精排模型的其他部分都在用最新的数据实时更新,只有GSU部分还在使用过时的索引,成为性能短板。

所以首先要取消离线索引,让target item在线直接从user behaivor sequence中找到与自己相似的historical items:

  • target item embedding与每个historical item embedding都是最新的(共享的embedding),没有了更新频率上的gap
  • embedding都是由精排模型的目标更新(embedding都为了优化精排模型的目标),没有了优化目标的gap。

最自然想到的方法就是target attention,让target item与每个historical item逐一点积,这兜兜转转由回到了起点,我们就是从attention出发来的。

一种解决方法是SimHash。

ETA:《End-to-End User Behavior Retrieval in Click-Through Rate Prediction Model》

SimHash

在这里插入图片描述

SimHash是Locality-Sensitive Hashing(LSH)的一种实现,其过程:

  1. 给定一个随机矩阵 R ∈ R m × d R \in R^{m \times d} RRm×d的矩阵,每一行代表一个hash function。
  2. 对任意 d 维的向量 x,计算 h ( x , R ) = S ign ⁡ ( R x ) h(x, R)=S \operatorname{ign}(R x) h(x,R)=Sign(Rx),也就是将x映射成m维长的整数向量(大于0为1,小于0为0)。
  3. 因为结果向量的每位只能是0或1,从而 h ( x , R ) h(x,R) h(x,R)可以表示成一个m-bit的整数。 h ( x , R ) h(x,R) h(x,R)可以称为hash signature,或hash fingerprint。

SimHash的优点在于其locality-preserving属性:两个向量 v 1 v_1 v

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值