周期信号的傅里叶级数展开

傅里叶级数展开的定义

将一个周期信号分解为一个直流分量和一系列复指数信号分量之和的过程被称为傅里叶级数展开。
周期信号 f ( t ) f(t) f(t)的傅里叶级数展开式为: f ( t ) = ∑ k = − ∞ ∞ c k e j k w 0 t f(t)=\sum_{k=-\infin}^{\infin}c_ke^{jkw_0t} f(t)=k=ckejkw0t
其中:
w 0 : w 0 = 2 π T w_0:w_0=\frac{2\pi}{T} w0:w0=T2π,周期 T T T确定了 w 0 w_0 w0就确定了

c k c_k ck:傅里叶系数, c 0 c_0 c0就是直流分量

傅里叶级数展开的几何意义

傅里叶级数展开的本质就是用一系列角速度为 w = k w 0 w=kw_0 w=kw0的旋转向量 c k e j k w 0 t c_ke^{jkw_0t} ckejkw0t来合成周期信号。旋转向量在 t = 0 t=0 t=0时刻对应的向量就是傅里叶系数 c k c_k ck
如下图所示:
在这里插入图片描述

傅里叶系数的计算公式

傅里叶系数的计算公式如下: c k = 1 T ∫ − T / 2 T / 2 f ( t ) e − j k w 0 t d t   ( k = 0 , ± 1 , ± 2 , . . . ) c_k=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jkw_0t}dt\, (k=0,\pm1,\pm 2,...) ck=T1T/2T/2f(t)ejkw0tdt(k=0,±1,±2,...)
这个公式是怎么得来的呢?

  • 将傅里叶级数展开式中 k = m k=m k=m那一项单独列出来: f ( t ) = ∑ k = − ∞ ∞ c k e j k w 0 t = c m e j m w 0 t + ∑ k = − ∞ , k ≠ m ∞ c k e j k w 0 t f(t)=\sum_{k=-\infin}^{\infin}c_ke^{jkw_0t}=c_me^{jmw_0t}+\sum_{k=-\infin,k\neq m}^{\infin}c_ke^{jkw_0t} f(t)=k=ckejkw0t=cmejmw0t+k=,k=mckejkw0t
  • 两端乘以 e − j m w 0 t e^{-jmw_0t} ejmw0t: f ( t ) e − j m w 0 t = c m e j m w 0 t e − j m w 0 t + ∑ k = − ∞ , k ≠ m ∞ c k e j k w 0 t e − j m w 0 t = c m + ∑ k = − ∞ , k ≠ m ∞ c k e j ( k − m ) w 0 t f(t)e^{-jmw_0t}=c_me^{jmw_0t}e^{-jmw_0t}+\sum_{k=-\infin,k\neq m}^{\infin}c_ke^{jkw_0t}e^{-jmw_0t}=c_m+\sum_{k=-\infin,k\neq m}^{\infin}c_ke^{j(k-m)w_0t} f(t)ejmw0t=cmejmw0tejmw0t+k=,k=mckejkw0tejmw0t=cm+k=,k=mckej(km)w0t
  • 在基波周期内对两端进行积分: ∫ − T / 2 T / 2 f ( t ) e − j m w 0 t d t   = ∫ − T / 2 T / 2 c m d t   + ∫ − T / 2 T / 2 ∑ k = − ∞ , k ≠ m ∞ c k e j ( k − m ) w 0 t d t   \int_{-T/2}^{T/2}f(t)e^{-jmw_0t}dt\,=\int_{-T/2}^{T/2}c_mdt\,+\int_{-T/2}^{T/2}\sum_{k=-\infin,k\neq m}^{\infin}c_ke^{j(k-m)w_0t}dt\, T/2T/2f(t)ejmw0tdt=T/2T/2cmdt+T/2T/2k=,k=mckej(km)w0tdt
    根据复指数信号的正交性,上式中求和项的积分为0,因此:
    ∫ − T / 2 T / 2 f ( t ) e − j m w 0 t d t   = ∫ − T / 2 T / 2 c m d t   = c m T \int_{-T/2}^{T/2}f(t)e^{-jmw_0t}dt\,=\int_{-T/2}^{T/2}c_mdt\,=c_mT T/2T/2f(t)ejmw0tdt=T/2T/2cmdt=cmT
  • 求出 c m c_m cm:
    c m = 1 T ∫ − T / 2 T / 2 f ( t ) e − j m w 0 t d t   c_m=\frac{1}{T} \int_{-T/2}^{T/2}f(t)e^{-jmw_0t}dt\, cm=T1T/2T/2f(t)ejmw0tdt

方波信号的傅里叶系数

在这里插入图片描述
方波信号 x ( t ) x(t) x(t)周期为 T T T,幅度为1,脉宽为 τ \tau τ,对方波来说,占空比为 1 / 2 1/2 1/2,因此 T = 2 τ T=2\tau T=2τ

-先求 c 0 c_0 c0
c 0 = 1 T ∫ − τ / 2 τ / 2 x ( t ) d t   = 1 T ∫ − τ / 2 τ / 2 1 d t   = 0.5 c_0=\frac{1}{T}\int_{-\tau /2}^{\tau /2}x(t)dt\,=\frac{1}{T}\int_{-\tau /2}^{\tau /2}1dt\,=0.5 c0=T1τ/2τ/2x(t)dt=T1τ/2τ/21dt=0.5

  • 再来求 c k c_k ck
    c k = 1 T ∫ − T / 2 T / 2 x ( t ) e − j k w 0 t d t   = 1 T ∫ − T / 2 T / 2 ( cos ⁡ k w 0 t   − j sin ⁡ k w 0 t ) d t   = 1 T ∫ − T / 2 T / 2 cos ⁡ k w 0 t   d t   − j 1 T ∫ − T / 2 T / 2 sin ⁡ k w 0 t   d t   = 1 T ∫ − T / 2 T / 2 cos ⁡ k w 0 t   d t   = 2 k w 0 T ∫ 0 T / 2 cos ⁡ k w 0 t   d ( k w 0 t )   = s i n ( k w 0 τ / 2 ) k w 0 T / 2 c_k=\frac{1}{T} \int_{-T/2}^{T/2}x(t)e^{-jkw_0t}dt\,=\frac{1}{T} \int_{-T/2}^{T/2}(\cos{kw_0t\,}-j\sin{kw_0t})dt\,\\ =\frac{1}{T} \int_{-T/2}^{T/2}\cos{kw_0t\,}dt\,-j\frac{1}{T} \int_{-T/2}^{T/2}\sin{kw_0t\,}dt\,\\ =\frac{1}{T} \int_{-T/2}^{T/2}\cos{kw_0t\,}dt\,\\ =\frac{2}{kw_0T} \int_{0}^{T/2}\cos{kw_0t\,}d(kw_0t)\,\\=\frac{sin(kw_0\tau /2)}{kw_0T/2} ck=T1T/2T/2x(t)ejkw0tdt=T1T/2T/2(coskw0tjsinkw0t)dt=T1T/2T/2coskw0tdtjT1T/2T/2sinkw0tdt=T1T/2T/2coskw0tdt=kw0T20T/2coskw0td(kw0t)=kw0T/2sin(kw0τ/2)
    由: w 0 = 2 π / T w_0=2\pi/T w0=2π/T,得: w 0 T = 2 π w_0T=2\pi w0T=2π
    又因为: T = 2 τ T=2\tau T=2τ,所以: w 0 2 τ = 2 π w_02\tau=2\pi w02τ=2π,得到: w 0 τ = π w_0\tau =\pi w0τ=π
    得:
    c k = 1 2 s i n ( k π / 2 ) k π / 2 = 1 2 s i n c ( k 2 ) c_k=\frac{1}{2}\frac{sin(k\pi /2)}{k \pi/2}=\frac{1}{2} sinc(\frac{k}{2}) ck=21kπ/2sin(kπ/2)=21sinc(2k)

周期矩形信号的傅里叶级数

在方波信号的傅里叶系数推导过程中,我们用 τ \tau τ表示脉冲的宽度,用 T T T表示脉冲的周期,得出傅里叶系数的表达式:
c k = s i n ( k w 0 τ / 2 ) k w 0 T / 2 c_k=\frac{sin(kw_0\tau /2)}{kw_0T/2} ck=kw0T/2sin(kw0τ/2)
回顾整个推导过程可以发现,这个结果对幅值为1,脉冲为 τ \tau τ,周期为 T T T的周期矩形信号也是适用的。
因为: w 0 = 2 π / T w_0=2\pi/T w0=2π/T,所以: w 0 = 2 π w_0=2\pi w0=2π
假定占空比为 1 / n 1/n 1/n,即: T = n τ T=n\tau T=nτ,所以: w 0 n τ = 2 π w_0n\tau=2\pi w0nτ=2π,得到: w 0 τ = 2 π / n w_0\tau=2\pi/n w0τ=2π/n,代入上面的傅里叶系数表达式,得到:
c k = 1 n s i n ( k π / n ) k π / n = 1 n s i n c ( k n ) c_k=\frac{1}{n}\frac{sin(k\pi /n)}{k\pi/n}=\frac{1}{n}sinc(\frac{k}{n}) ck=n1kπ/nsin(kπ/n)=n1sinc(nk)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值