【信号与系统 - 6】周期信号的傅里叶变换

1 方法一:对傅里叶级数展开式 F T 变换 FT变换 FT变换

由于周期信号进行傅里叶变换不满足标准定义式 F ( j w ) = ∫ − ∞ + ∞ e − j w t f ( t ) d t F(jw)=\int^{+\infty}_{-\infty}e^{-jwt}f(t)dt F(jw)=+ejwtf(t)dt 使用的条件:需要绝对可积(周期信号时域上无限向两端延展会导致积分不收敛,而傅里叶变换要求积分主体范围是有界的),则求周期信号的傅里叶变换需另辟新径:根据周期信号的傅里叶级数展开式为 f ( t ) = ∑ n = − ∞ n = + ∞ F n e j n w 0 t f(t)=\sum_{n=-\infty}^{n=+\infty}F_ne^{jnw_0t} f(t)=n=n=+Fnejnw0t

对上式求傅里叶变换(实际上将对周期信号进行 F T 变换 FT变换 FT变换 转化成了对非周期信号 e j n w 0 t e^{jnw_0t} ejnw0t F T 变换 FT变换 FT变换

F T [ f ( t ) ] = F T [ ∑ n = − ∞ + ∞ F n e j n w 0 t ] = ∑ n = − ∞ + ∞ F n ⋅ F T [ e j n w 0 t ] FT[f(t)]=FT[\sum_{n=-\infty}^{+\infty}F_ne^{jnw_0t}]=\sum_{n=-\infty}^{+\infty}F_n\cdot FT[e^{jnw_0t}] FT[f(t)]=FT[n=+Fnejnw0t]=n=+FnFT[ejnw0t]

由于 F T [ f ( t ) e ± j w 0 t ] = F [ j ( w ∓ w 0 ) ] FT[f(t)e^{\pm jw_0t}]=F[j(w\mp w_0)] FT[f(t)e±jw0t]=F[j(ww0)] F T [ 1 ] = 2 π δ ( w ) FT[1]=2\pi\delta(w) FT[1]=2πδ(w),则:

F T [ e j n w 0 t ] = F T [ 1 ⋅ e j n w 0 t ] = 2 π δ ( w − n w 0 ) FT[e^{jnw_0t}]=FT[1\cdot e^{jnw_0t}]=2\pi\delta(w-nw_0) FT[ejnw0t]=FT[1ejnw0t]=2πδ(wnw0)

合并得到:

F T [ f ( t ) ] = 2 π ∑ n = − ∞ + ∞ F n ⋅ δ ( w − n w 0 ) FT[f(t)]=2\pi\sum_{n=-\infty}^{+\infty}F_n\cdot \delta(w-nw_0) FT[f(t)]=2πn=+Fnδ(wnw0)

则周期信号的傅里叶变换得到的频谱函数图由无限个冲激信号构成


  • 例1:对矩形脉冲信号 f ( t ) f(t) f(t) (实际上就是周期的门函数 g τ ( t ) = u ( t + τ 2 ) − u ( t − τ 2 ) g_\tau(t)=u(t+\frac{\tau}{2})-u(t-\frac{\tau}{2}) gτ(t)=u(t+2τ)u(t2τ) )进行 F T 变换 FT变换 FT变换
    注:下面所有的 w 0 = 2 π T w_0=\frac{2\pi}{T} w0=T2π

在这里插入图片描述

F n = 1 T ∫ T e − j n w 0 t ⋅ f T ( t ) d t , ∣ n ∣ = 0 , 1 , 2 , 3... F_n=\frac{1}{T}\int_Te^{-jnw_0t}\cdot f_T(t)dt,|n|=0,1,2,3... Fn=T1Tejnw0tfT(t)dt,n=0,1,2,3...

由于:

f T ( t ) = ∑ m = − ∞ + ∞ g τ ( t − m T ) f_T(t)=\sum_{m=-\infty}^{+\infty}g_\tau(t-mT) fT(t)=m=+gτ(tmT)

则:

F n = 1 T ∫ T e − j n w 0 t ⋅ [ ∑ m = − ∞ + ∞ g τ ( t − m T ) ] d t F_n=\frac{1}{T}\int_Te^{-jnw_0t}\cdot[\sum_{m=-\infty}^{+\infty}g_\tau(t-mT)]dt Fn=T1Tejnw0t[m=+gτ(tmT)]dt

由于 T > τ T>\tau T>τ,一个周期内只有一个门函数,则:

F n = 1 T ∫ − τ 2 + τ 2 e − j n w 0 t ⋅ g τ ( t ) d t = 1 T ∫ − τ 2 + τ 2 e − j n w 0 t ⋅ 1 d t F_n=\frac{1}{T}\int_{-\frac{\tau}{2}}^{+\frac{\tau}{2}}e^{-jnw_0t}\cdot g_\tau(t)dt=\frac{1}{T}\int_{-\frac{\tau}{2}}^{+\frac{\tau}{2}}e^{-jnw_0t}\cdot 1dt Fn=T12τ+2τejnw0tgτ(t)dt=T12τ+2τejnw0t1dt
= 1 T ⋅ 1 − j n w 0 [ e − j n w 0 t ] t = − τ 2 t = + τ 2 = 2 T s i n ( n w 0 τ 2 ) n w 0 =\frac{1}{T}\cdot\frac{1}{-jnw_0}\Big[e^{-jnw_0t}\Big]_{t=-\frac{\tau}{2}}^{t=+\frac{\tau}{2}}=\frac{2}{T}\frac{sin(\frac{nw_0\tau}{2})}{nw_0} =T1jnw01[ejnw0t]t=2τt=+2τ=T2nw0sin(2nw0τ)

结论是:

F n = τ T S a ( n w 0 τ 2 ) F_n=\frac{\tau}{T}Sa(\frac{nw_0\tau}{2}) Fn=TτSa(2nw0τ)

则:

F T [ f ( t ) ] = 2 π τ T ∑ n = − ∞ + ∞ S a ( n w 0 τ 2 ) ⋅ δ ( w − n w 0 ) FT[f(t)]=\frac{2\pi\tau}{T}\sum_{n=-\infty}^{+\infty}Sa(\frac{nw_0\tau}{2})\cdot \delta(w-nw_0) FT[f(t)]=T2πτn=+Sa(2nw0τ)δ(wnw0)

在这里插入图片描述


例2、 δ T ( t ) = ∑ m = − ∞ + ∞ δ ( t + m T ) , m 为整数 \delta_T(t)=\sum_{m=-\infty}^{+\infty}\delta(t+mT),m为整数 δT(t)=m=+δ(t+mT),m为整数

F n = 1 T ∫ T δ T ( t ) e − j n w 0 t d t = 1 T ∫ − T 2 T 2 δ ( t ) e − j n w 0 t d t F_n=\frac{1}{T}\int_T\delta_T(t)e^{-jnw_0t}dt=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\delta(t)e^{-jnw_0t}dt Fn=T1TδT(t)ejnw0tdt=T12T2Tδ(t)ejnw0tdt

根据采样定理 ∫ − ∞ + ∞ f ( t ) δ ( t ) d t = ∫ − ∞ + ∞ f ( 0 ) δ ( t ) d t = f ( 0 ) ∫ − T 2 T 2 δ ( t ) d t = f ( 0 ) ⋅ 1 \int_{-\infty}^{+\infty}f(t)\delta(t)dt=\int_{-\infty}^{+\infty}f(0)\delta(t)dt=f(0)\int_{-\frac{T}{2}}^{\frac{T}{2}}\delta(t)dt=f(0)\cdot 1 +f(t)δ(t)dt=+f(0)δ(t)dt=f(0)2T2Tδ(t)dt=f(0)1 ,则:

F n = 1 T e 0 = 1 T F_n=\frac{1}{T}e^0=\frac{1}{T} Fn=T1e0=T1

则傅里叶变换为:

F T [ δ T ( t ) ] = 2 π T ⋅ ∑ n = − ∞ + ∞ δ ( w − n w 0 ) = w 0 ⋅ ∑ n = − ∞ + ∞ δ ( w − n w 0 ) FT[\delta_T(t)]=\frac{2\pi}{T}\cdot\sum_{n=-\infty}^{+\infty}\delta(w-nw_0)=w_0\cdot\sum_{n=-\infty}^{+\infty}\delta(w-nw_0) FT[δT(t)]=T2πn=+δ(wnw0)=w0n=+δ(wnw0)


2 方法二:通过卷积进行 F T 变换 FT变换 FT变换

f T ( t ) = ∑ m = − ∞ + ∞ f 0 ( t − m T ) = f 0 ( t ) ∗ δ T ( t ) = f 0 ( t ) ∗ ∑ m = − ∞ + ∞ δ ( t − m T ) f_T(t)=\sum_{m=-\infty}^{+\infty}f_0(t-mT)=f_0(t)*\delta_T(t)=f_0(t)*\sum_{m=-\infty}^{+\infty}\delta(t-mT) fT(t)=m=+f0(tmT)=f0(t)δT(t)=f0(t)m=+δ(tmT)
f T ( t ) ↔ F T [ f 0 ( t ) ] ⋅ F T [ δ T ( t ) ] = F T [ f 0 ( t ) ] ⋅ w 0 ∑ n = − ∞ + ∞ δ ( w − n w 0 ) = 2 π T ⋅ F T [ f 0 ( t ) ] ⋅ ∑ n = − ∞ + ∞ δ ( w − n w 0 ) f_T(t)\leftrightarrow FT[f_0(t)]\cdot FT[\delta_T(t)]=FT[f_0(t)]\cdot w_0\sum_{n=-\infty}^{+\infty}\delta(w-nw_0)=\frac{2\pi}{T}\cdot FT[f_0(t)]\cdot\sum_{n=-\infty}^{+\infty}\delta(w-nw_0) fT(t)FT[f0(t)]FT[δT(t)]=FT[f0(t)]w0n=+δ(wnw0)=T2πFT[f0(t)]n=+δ(wnw0)

实际上:将对 f T ( t ) f_T(t) fT(t) 这个周期信号的傅里叶变换求解转变为了对某个周期内的单独的(非周期的)信号 f 0 ( t ) f_0(t) f0(t) F T 变换 FT变换 FT变换


证明 f 0 ( t ) ∗ δ T ( t ) = f T ( t ) f_0(t)*\delta_T(t)=f_T(t) f0(t)δT(t)=fT(t)

f 0 ( t ) ∗ δ ( t ) = ∫ − ∞ + ∞ f 0 ( τ ) ⋅ δ ( t − τ ) d τ f_0(t)*\delta(t)=\int_{-\infty}^{+\infty}f_0(\tau)\cdot\delta(t-\tau)d\tau f0(t)δ(t)=+f0(τ)δ(tτ)dτ

根据 ∫ − ∞ + ∞ f ( t ) ⋅ δ ( t − t 0 ) d t = ∫ − ∞ + ∞ f ( t 0 ) ⋅ δ ( t − t 0 ) d t = f ( t 0 ) \int_{-\infty}^{+\infty}f(t)\cdot\delta(t-t_0)dt=\int_{-\infty}^{+\infty}f(t_0)\cdot\delta(t-t_0)dt=f(t_0) +f(t)δ(tt0)dt=+f(t0)δ(tt0)dt=f(t0),将 t t t 替换成 τ \tau τ,即 ∫ − ∞ + ∞ f ( τ ) ⋅ δ ( τ − t 0 ) d τ = ∫ − ∞ + ∞ f ( t 0 ) ⋅ δ ( τ − t 0 ) d τ = f ( t 0 ) \int_{-\infty}^{+\infty}f(\tau)\cdot\delta(\tau-t_0)d\tau=\int_{-\infty}^{+\infty}f(t_0)\cdot\delta(\tau-t_0)d\tau=f(t_0) +f(τ)δ(τt0)dτ=+f(t0)δ(τt0)dτ=f(t0)

f 0 ( t ) ∗ δ ( t ) = ∫ − ∞ + ∞ f 0 ( τ ) ⋅ δ ( t − τ ) d τ f_0(t)*\delta(t)=\int_{-\infty}^{+\infty}f_0(\tau)\cdot\delta(t-\tau)d\tau f0(t)δ(t)=+f0(τ)δ(tτ)dτ

又由于 δ ( t ) \delta(t) δ(t) 为偶函数,则 δ ( t − τ ) = δ ( τ − t ) \delta(t-\tau)=\delta(\tau-t) δ(tτ)=δ(τt),则:

= ∫ − ∞ + ∞ f 0 ( τ ) ⋅ δ ( τ − t ) d τ = f ( t ) =\int_{-\infty}^{+\infty}f_0(\tau)\cdot\delta(\tau-t)d\tau=f(t) =+f0(τ)δ(τt)dτ=f(t)

δ T ( t ) \delta_T(t) δT(t) 替换掉原来的 δ ( t ) \delta(t) δ(t),则可推出: f 0 ( t ) ∗ δ T ( t ) = f T ( t ) f_0(t)*\delta_T(t)=f_T(t) f0(t)δT(t)=fT(t)


同上面例1、对周期矩形脉冲求 F ( j w ) F(jw) F(jw)

其中 f 0 ( t ) = g τ ( t ) f_0(t)=g_\tau(t) f0(t)=gτ(t) ,且 F T [ g τ ( t ) ] = τ S a ( w τ 2 ) FT[g_\tau(t)]=\tau Sa(\frac{w\tau}{2}) FT[gτ(t)]=τSa(2wτ)

G T τ ( t ) = g τ ( t ) ∗ δ T ( t ) ↔ w 0 τ S a ( w τ 2 ) ⋅ ∑ n = − ∞ + ∞ δ ( w − n w 0 ) = 2 π τ T ∑ n = − ∞ + ∞ S a ( w τ 2 ) ⋅ δ ( w − n w 0 ) G_T^\tau(t)=g_\tau(t)*\delta_T(t)\leftrightarrow w_0\tau Sa(\frac{w\tau}{2})\cdot \sum_{n=-\infty}^{+\infty}\delta(w-nw_0)=\frac{2\pi\tau}{T}\sum_{n=-\infty}^{+\infty}Sa(\frac{w\tau}{2})\cdot\delta(w-nw_0) GTτ(t)=gτ(t)δT(t)w0τSa(2wτ)n=+δ(wnw0)=T2πτn=+Sa(2wτ)δ(wnw0)

上面存在一个频域的抽样特性 f ( w ) δ ( w − w 0 ) = f ( w 0 ) δ ( w − w 0 ) f(w)\delta(w-w_0)=f(w_0)\delta(w-w_0) f(w)δ(ww0)=f(w0)δ(ww0)

F ( j w ) = 2 π τ T ∑ n = − ∞ + ∞ S a ( n w 0 τ 2 ) ⋅ δ ( w − n w 0 ) F(jw)=\frac{2\pi\tau}{T}\sum_{n=-\infty}^{+\infty}Sa(\frac{nw_0\tau}{2})\cdot\delta(w-nw_0) F(jw)=T2πτn=+Sa(2nw0τ)δ(wnw0)

  • 14
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值