Focal loss 中两个加权参数的原理和产生的影响

首先需要明确一个在损失函数中的加权细节:想要在损失函数中对样本进行加权,那么加权的思路应该要是逆向的。因为损失函数的优化目标是越小越好,所以你越想保护的部分应该给予小权重,使得这部分可以大。而越想惩罚的部分,应该给予大权重,这样强制让他们只能是小的。

 

Focal loss :FL(p_t)=\begin{cases} -\alpha (1-p)^{\gamma}log(p) & \text{ if } y=1 \\ -(1-\alpha)p^{\gamma}log(1-p) & \text{ if } otherwise \end{cases} 。里面最核心的两个参数 \alpha 和 \gamma。 

 

其中 \alpha 类似与class weight 给类别加权重。如果 y = 1 类样本个数大于 y = 0, 那么 \alpha 应该小于 0.5,保护样本少的类,而多惩罚样本多的类。结论是样本越不平衡,\alpha 应该越靠近 0 或者 1。

而 \gamma 的作用是竟然把难例分开,这个参数越大,导致的后果是预测的概率值越偏向于0~1的两端。具体推理如下图所示:

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值