Focal Loss解决什么问题、如何写,每个参数作用

Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘

原始的交叉熵损失

此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优。

focal loss

添加参数γ,当γ大于0时,对于易分的正样本或负样本,权重小,而对于难区分的样本则权重大,避免让简单样本主导loss,γ越大,困难样本的权重越大

添加参数α,用来平衡正负样本本身的比例不均

文中参数是α=0.25,γ=2

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值