杭电1081(矩阵问题)用LIS+DP解决的(有参考。)

点击打开链接http://acm.hdu.edu.cn/showproblem.php?pid=1081

题意:

就是给出一个矩阵N*N.,然后要求你求出最大的子矩阵的(即求出最大的值)。

思路:有2个,但是时间复杂度各有不同。一种当然毫无疑问就是直接暴力求解,其次的就是先用LIS将矩阵简化,然后就是化为(DP)的问题了。关于LIS的讲解,见大神讲解(点击打开链接http://blog.csdn.net/niteip/article/details/7444973

见代码:首先看下暴力的吧!(虽未暴力,但一开始并没想到,因为怕超时)。

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
using namespace std;
const int maxn=105;
int map[maxn][maxn];
int n,sum,s,maxx;
int main()
{
    int i,j,k,l;
    while(scanf("%d",&n)!=EOF)
    {
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                scanf("%d",&map[i][j]);
            }
        }
        for(sum=maxx=0,i=1;i<=n;i++)//这几个for中要注意何时将sum。s,赋值为0;注意。。。
        {
            for(j=i;j<=n;j++)
            {
                for(sum=0,k=1;k<=n;k++)
                {
                    for(s=0,l=i;l<=j;l++)
                    {
                        s+=map[k][l];
                    }
                      sum+=s;
                    if(sum<0)
                        sum=0;
                    if(maxx<sum)
                    maxx=sum;

                }
            }
        }
        printf("%d\n",maxx);
    }
    return 0;

}

其次就是用转化的方法去做。当然我这是借鉴别人的,才学会利用LIS简化问题的,确实问题时间减少了。见代码吧!!

 

 

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdlib>
using namespace std;
const int maxn=105;
int dp[maxn];
int map[maxn][maxn];
int s[maxn];
int n,maxx;
int main()
{
    int i,j,k ,l;
    while(scanf("%d",&n)!=EOF)
    {
       maxx=-100000;
        for(i=0;i<n;i++)
        {
            for(j=0;j<n;j++)
            {
                scanf("%d",&map[i][j]);
            }
        }
        for(i=0;i<n;i++)
        {
            for(j=i;j<n;j++)
            {
                memset(s,0,sizeof(s));
                if(i==j)
                {
                    for(k=0;k<n;k++)
                    {
                        s[k]=map[i][k];//一下的几个for是为了将每行相加,这样减少循环的次数。i , j  表示行数。
                                             //如:i=2  j=3  也就是2、3行,我们可以把2、3行的数加在一起,成了一个新行
                                            //(-4+-1)  (1+8)  (-4+0)  (1+-2)
                    }
                }
                else
                {
                    for(k=0;k<n;k++)
                    {
                        for(l=i;l<=j;l++)
                        {
                          s[k]+=map[l][k];
                        }
                    }
                }
                 memset(dp,0,sizeof(dp));
                for(k=1;k<=n;k++)
                {
                    if(dp[k-1]>0)
                    dp[k]=dp[k-1]+s[k-1];//动态规划如果b[j-1] >0, 那么显然b[j] = b[j-1] + a[j],用之前最大的一个加上a[j]即可,
                                          //因为a[j]必须包含
                                          // 如果b[j-1]<=0,那么b[j] = a[j] ,因为既然最大,前面的负数必然不能使你更大:
                    else
                        dp[k]=s[k-1];
                        if(maxx<dp[k])
                     maxx=dp[k];
                }
            }
        }
        printf("%d\n",maxx);
    }
    return 0;
}

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值