常见的激活函数

Sigmoid函数:

Sigmoid 是常用的非线性的激活函数,可以将全体实数映射到(0, 1)区间上,其采用非线性方法将数据进行归一化处理;sigmoid函数通常用在回归预测和二分类(即按照是否大于0.5进行分类)模型的输出层中。
函数:
在这里插入图片描述
在这里插入图片描述

求导:
在这里插入图片描述
在这里插入图片描述

优点: Sigmoid的取值范围在(0, 1),而且是单调递增,比较容易优化、 Sigmoid求导比较容易,可以直接推导得出。**缺点:**Sigmoid函数收敛比较缓慢、由于Sigmoid是软饱和,容易产生梯度消失,对于深度网络训练不太适合(从图上sigmoid的导数可以看出当x趋于无穷大的时候,也会使导数趋于0)、Sigmoid函数并不是以(0,0)为中心点。

ReLU函数:

Relu函数的优点:1.在SGD(随机梯度下降算法)中收敛速度够快。2.不会出现像Sigmoid那样梯度消失问题。3.提供了网络稀疏表达能力。4.在 无监督训练中也有良好的表现。缺点:1.不以0为中心。2.前向传导(forward pass)过程中,如果 x < 0,则神经元保持非激活状态,且在后向传导(backward pass)中「杀死」梯度。这样权重无法得到更新,网络无法学习。神经元死亡是不可逆的。
在这里插入图片描述

Softmax函数:

在使用广义线性模型拟合这个多项式分布模型之前,需要先推导一个函数,这个函数在广义线性模型的目标函数中会用到。这个函数叫做Softmax函数。SoftMax公式(向量形式表示的公式):
在这里插入图片描述

softmax回归做的事情是通过对数似然函数产生θ的极大似然估计。softmax激活函数对参数的优化则是通过优化交叉熵损失函数的。Softmax可以进行求导反向传播。

在这里插入图片描述

LeakyRelu函数:

Leaky ReLU 是为解决“ ReLU 死亡”问题的尝试。
在这里插入图片描述
ReLU 中当 x<0 时,函数值为 0 。而 Leaky ReLU 则是给出一个很小的负数梯度值,比如 0.01 。
优点:不会过拟合(saturate)、计算简单有效比sigmoid/tanh收敛快。

RreLu:

RReLU也是Leaky ReLU的一个变体。在RReLU中,负值的斜率在训练中是随机的,在之后的测试中就变成了固定的了。RReLU的亮点在于,在训练环节中,aji是从一个均匀的分布U(I,u)中随机抽取的数值。RReLU中的aji是一个在一个给定的范围内随机抽取的值,这个值在测试环节就会固定下来。RReLU的亮点在于,在训练环节中,aji是从一个均匀的分布U(I,u)中随机抽取的数值。形式上来说,我们能得到以下结果:
在这里插入图片描述

PReLu:

PReLU也是针对ReLU的一个改进型,在负数区域内,PReLU有一个很小的斜率,这样也可以避免ReLU死掉的问题。相比于ELU,PReLU在负数区域内是线性运算,斜率虽然小,但是不会趋于0,这算是一定的优势。PReLU的公式,里面的参数α一般是取0~1之间的数,而且一般还是比较小的,如零点零几。当α=0.01时,我们叫PReLU为Leaky ReLU,算是PReLU的一种特殊情况.其中是超参数。
在这里插入图片描述
在这里插入图片描述
这里引入了一个随机的超参数,它可以被学习,因为你可以对它进行反向传播。这使神经元能够选择负区域最好的梯度,有了这种能力,它们可以变成 ReLU 或 Leaky ReLU。负值部分的斜率是根据数据来定的,而非预先定义的。
对比:
ReLU family:
在这里插入图片描述

ReLU系列对比:
在这里插入图片描述

Maxout:Maxout模型实际上也是一种新型的激活函数,在前馈式神经网络中,Maxout的输出即取该层的最大值,在卷积神经网络中,一个Maxout feature map可以是由多个feature map取最值得到。maxout的拟合能力是非常强的,它可以拟合任意的的凸函数。但是它同dropout一样需要人为设定一个k值。为了便于理解,假设有一个在第i层有2个节点第(i+1)层有1个节点构成的神经网络。
是一个可学习的分段线性函数。
在这里插入图片描述

参考链接:https://blog.csdn.net/m0_38065572/article/details/104947345?ops_request_misc=%257B%2522request
https://blog.csdn.net/ChenVast/article/details/81382939?ops_request_misc=%257B%2522request

ELU:

ELU函数是针对ReLU函数的一个改进型,相比于ReLU函数,在输入为负数的情况下,是有一定的输出的,而且这部分输出还具有一定的抗干扰能力。这样可以消除ReLU死掉的问题,不过还是有梯度饱和和指数运算的问题。
在这里插入图片描述
在这里插入图片描述
特点:右侧的线性部分能够缓解梯度消失,左侧的软饱和能够对于输入变化鲁棒.而且收敛速度更快.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值