分析案例:贷款逾期分析

本文通过分析某消费金融公司的逾期贷款案例,探讨了如何构建逾期用户画像,涉及用户借款金额、期限、利率、评级和用途等因素。数据清洗后,发现逾期率高达39%,逾期用户主要特征为特定金额区间、等级和利率。建议优化信审策略,针对高风险群体提高审批标准和利率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

通过具体的项目案例,学习面对数据,如何去分析的思路。

 

下面内容来自社群会员的项目作业。带着下面问题去学习这个案例:

 

1)是如何展开分析思路的?

2)分析维度有哪些?

3)如何用数据验证提出问题的?

4)分析得出哪些结论?

5)提出了哪些有效的建议?

 


 

一、背景描述

 

目前本人在某消费金融任职,虽然公司在信贷评估业务上有基于其他金融机构的大数据风控,如信用卡申请次数、网贷逾期记录等,但是业务量小,还未对公司客户群体进行逾期分析。

 

因此想借助互联网,接触庞大的用户群,通过案例来锻炼分析能力。对逾期用户的行为特征进行分析,给出逾期用户的行为特征画像,为降低逾期,风险前置提出有建设性的意见。

 

二、案例数据

 

本数据是某平台2016年的贷款数据,来自kaggle平台

(https://www.kaggle.com/skihikingkevin/online-p2p-lending)

 

数据集具体字段如下:

 

 

三、提出问题

 

用户画像的核心工作是给用户贴“标签”,而“标签”是能表示用户某一维度特征的标识,主要用于业务的运营和数据分析。

 

如何构建逾期用户画像呢?

 

自然是结合公司业务,根据人口统计、社会属性、用户消费画像、用户行为画像,用户兴趣画像等特征来构建。

 

如下图,这些是各行业通用的特征。但用户画像包含的内容并不完全固定,像金融领域,还会有风险画像,包括征信、违约、洗钱、还款能力、保险黑名单等。

 

 

根据用户画像的基本含义和数据集内各字段维度,我们对构建逾期用户画像的相关问题和数据维度进行确定。

 

隐藏,提出以下问题:

 

  • 整体贷款逾期情况是怎样的?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值