通过具体的项目案例,学习面对数据,如何去分析的思路。
下面内容来自社群会员的项目作业。带着下面问题去学习这个案例:
1)是如何展开分析思路的?
2)分析维度有哪些?
3)如何用数据验证提出问题的?
4)分析得出哪些结论?
5)提出了哪些有效的建议?
一、背景描述
目前本人在某消费金融任职,虽然公司在信贷评估业务上有基于其他金融机构的大数据风控,如信用卡申请次数、网贷逾期记录等,但是业务量小,还未对公司客户群体进行逾期分析。
因此想借助互联网,接触庞大的用户群,通过案例来锻炼分析能力。对逾期用户的行为特征进行分析,给出逾期用户的行为特征画像,为降低逾期,风险前置提出有建设性的意见。
二、案例数据
本数据是某平台2016年的贷款数据,来自kaggle平台
(https://www.kaggle.com/skihikingkevin/online-p2p-lending)
数据集具体字段如下:
三、提出问题
用户画像的核心工作是给用户贴“标签”,而“标签”是能表示用户某一维度特征的标识,主要用于业务的运营和数据分析。
如何构建逾期用户画像呢?
自然是结合公司业务,根据人口统计、社会属性、用户消费画像、用户行为画像,用户兴趣画像等特征来构建。
如下图,这些是各行业通用的特征。但用户画像包含的内容并不完全固定,像金融领域,还会有风险画像,包括征信、违约、洗钱、还款能力、保险黑名单等。
根据用户画像的基本含义和数据集内各字段维度,我们对构建逾期用户画像的相关问题和数据维度进行确定。
隐藏,提出以下问题:
-
整体贷款逾期情况是怎样的?