用Matlab实现快速傅立叶变换
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。
现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,(是否应该说采样点数为2*1024,并不是2s的数据))则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率(f0)为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。
从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i
3点: -2.8586E-14 - 1.1898E-13i
50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i
75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:
1点: 512
51点:384
76点:192
按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。
然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。
总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。
附贴上上述例子的matlab程序:
Matlab的例子(一)
t=0:1/256:1;%采样步长
y= 2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180);
N=length(t); %样点个数
plot(t,y);
fs=256;%采样频率
df=fs/(N-1) ;%分辨率
f=(0:N-1)*df;%其中每点的频率
Y=fft(y)/N*2;%真实的幅值
%Y=fftshift(Y);
figure(2)
plot(f,abs(Y));
由于以上程序是结合傅里叶算法转换得到的对称图,而常用的只需要一半就可以了。对应的程序如下:
t=0:1/256:1;%采样步长
y= 2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180);
N=length(t); %样点个数
plot(t,y);
fs=256;%采样频率
df=fs/(N-1);%分辨率
f=(0:N-1)*df;%其中每点的频率
Y=fft(y(1:N))/N*2;%真实的幅值
%Y=fftshift(Y);
figure(2)
plot(f(1:N/2),abs(Y(1:N/2)));
附一个计算fft的文件,MATLAB里面计算,输入数组和点数,已验证有效(数组是列还是行,可能需要自己调)
若将原始数据继续扩大N倍,fft的结果也会扩大N倍; 若查表数据扩大N倍,在使用到查表对应的值时,待处理结束后除以N即可,但是会引入误差;
function result = FFT_RIGHT(x, N)
x = double(x);
f = 1;
writetex = 0;
if writetex == 1;
fid = fopen('.\fft_vivien.txt','w'); %获取目标文件写入权限
end
M = log2(N);
if length(x) < N ;
x = [x zeros(1,N-length(x))]; %若x的长度不是2的整数次幂,则补零至N
end
BRTable = bin2dec(fliplr(dec2bin([1:N]-1,M))) + 1; %求 1:N 序列序号的倒位序:1.将系数取二进制并对调,然后取十进制
%2.matlab的下标从1开始,需要加1
Xreal = x(BRTable); %调整x输入顺序后的序列,并作为X的初始化
Ximag = zeros(1,N);
X = x(BRTable);
WN = exp(-j*2*pi/N);
for L = 1:M;
B = 2^(L-1); %第L级中,每个蝶形的两个输入数据相聚B个点,共有B个旋转因子
for J = 0:B-1; %第L级中不同的旋转因子
p = J*2^(M-L); %旋转因子的指数
WNp = WN^p;
%p = p*j;
for k = J+1: 2^L : N;
%计算出来的包括实部和虚部 此种方法已验证正确
f=0;
if f>0
t = X(k+B) * WNp; %产生错误:未定义与'cell'类型的输入参数相对应的运算符‘*’-x=[]非x={}
X(k+B) = X(k)-t; %将公式写成指数的形式,按虚实区分
X(k) = X(k)+t;
else
Wncosp = cos(2*pi/N*p);
Wnsinp = sin(2*pi/N*p);
Treal = Xreal(k+B)*Wncosp+Ximag(k+B)*Wnsinp;
Timag = Ximag(k+B)*Wncosp-Xreal(k+B)*Wnsinp;
Xreal(k+B) = Xreal(k) -Treal;
Ximag(k+B) = Ximag(k) -Timag;
Xreal(k) = Xreal(k)+Treal;
Ximag(k) = Ximag(k)+Timag;
end
end
end
end
%求数据的模
for i = 1:1:N;
Rereal(i) = Xreal(i)*Xreal(i);
Reimag(i) = Ximag(i)*Ximag(i);
Result(i) = sqrt(Rereal(i)+Reimag(i));
fprintf('%d \r\n ',Result(i));
if writetex == 1 %写入操作
fprintf(fid,'%d, %d,%d, %d \n',i,Rereal(i),Reimag(i),Result(i) ); %将数据写入目标文件
end
end
if writetex == 1
fclose(fid); %关闭对目标文件操作的入口
end
end