数据预测与估算算法(一)---产生式模型与判别式模型

产生式模型(Generative Model)和判别式模型(Discrimitive Model)都是机器学习中有监督学习的模型概念,对于输入X和输出Y,区别是:

产生式模型是估算X和Y的联合概率分布 P ( x , y ) P(x,y) P(x,y)
判别式模型是估算X和Y的条件概率分布 P ( y ∣ x ) P(y|x) P(yx)

产生式模型与判别式模型优缺点比较:

产生式模型:

优点

数据信息相对丰富,研究单类别问题灵活性较强,能够充分利用先验数据,模型可以通过增量学习的方式获得。

缺点

学习过程相对复杂,在目标分类问题中容易产生较大的错误率。

常见模型

朴素贝叶斯、隐马尔科夫模型、条件随机场、混合高斯模型。

判别式模型:

优点

分类边界比较灵活,适用于多类别问题研究,能够较好地分辨出类别之间的差异特征。

缺点

不能反应训练样本的本身特性,描述信息具备一定局限性。

常见模型

支持向量机、逻辑回归、神经网络、最大熵模型

ps:欢迎小伙伴们访问我的个人主页,并与我交流哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值