产生式模型(Generative Model)和判别式模型(Discrimitive Model)都是机器学习中有监督学习的模型概念,对于输入X和输出Y,区别是:
产生式模型是估算X和Y的联合概率分布
P
(
x
,
y
)
P(x,y)
P(x,y)
判别式模型是估算X和Y的条件概率分布
P
(
y
∣
x
)
P(y|x)
P(y∣x)
产生式模型与判别式模型优缺点比较:
产生式模型:
优点
数据信息相对丰富,研究单类别问题灵活性较强,能够充分利用先验数据,模型可以通过增量学习的方式获得。
缺点
学习过程相对复杂,在目标分类问题中容易产生较大的错误率。
常见模型
朴素贝叶斯、隐马尔科夫模型、条件随机场、混合高斯模型。
判别式模型:
优点
分类边界比较灵活,适用于多类别问题研究,能够较好地分辨出类别之间的差异特征。
缺点
不能反应训练样本的本身特性,描述信息具备一定局限性。
常见模型
支持向量机、逻辑回归、神经网络、最大熵模型
ps:欢迎小伙伴们访问我的个人主页,并与我交流哦!