判断点是否在多边形内的算法

如果判断点是否在凸多边形内,则有多种方法,方法简单,计算速度也快,直接使用物理引擎做判断也行

但实际问题中遇到的多边形不一定是凸多边形,它可能是凹边行或者复合多边形

判断一个点在多边形内或多边形外,射线法是个不错的选择


射线法,判断一点是否在多边形内或多边形外,只要从这点起,作一条射线,例如,沿x向直到负无穷,如果越过的边数是单数,这点就在多边形内,越过的边数是偶数,这点就在多边形外。

如图


注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,如果P在多边形外部,则交点个数必为偶数(0也在内)。所以,我们可以顺序考虑多边形的每条边,求出交点的总个数。还有一些特殊情况要考虑。假如考虑边(P1,P2),
1)如果射线正好穿过P1或者P2,那么这个交点会被算作2次,处理办法是如果P的从坐标与P1,P2中较小的纵坐标相同,则直接忽略这种情况
2)如果射线水平,则射线要么与其无交点,要么有无数个,这种情况也直接忽略。
3)如果射线竖直,而P0的横坐标小于P1,P2的横坐标,则必然相交。

4)再判断相交之前,先判断P是否在边(P1,P2)的上面,如果在,则直接得出结论:P再多边形内部

计算X轴坐标


//计算交点逻辑

tanα = b /  c;

tanα = d / a;

d = b*a / c;

代码:

bool HelloWorld::IsPointInsideShape(Vec2 pos,std::vector<Vec2>& m_vAllShape)
{
    int nCross = 0;
    int nCount = (int)m_vAllShape.size();
    Vec2 p = pos;
    for (int i = 0; i < nCount; i++)
    {
        Vec2 p1 = m_vAllShape[i];
        Vec2 p2 = m_vAllShape[(i + 1) % nCount];
        // 求解 y=p.y 与 p1p2 的交点
        if (p1.y == p2.y)
        {// p1p2 与 y=p0.y平行
            continue;
        }
        if (p.y < MIN(p1.y, p2.y))
        {// 交点在p1p2延长线上
            continue;
        }
        if (p.y >= MAX(p1.y, p2.y))
        {// 交点在p1p2延长线上
            continue;
        }
        // 求交点的 X 坐标 --------------------------------------------------------------
        double x = (double)(p.y - p1.y) * (double)(p2.x - p1.x) / (double)(p2.y - p1.y) + p1.x;
        if (x > p.x){
            nCross++; // 只统计单边交点
        }
    }
    // 单边交点为偶数,点在多边形之外
//    if (nCross % 2 == 1) {
//        log("在多边形内");
//    }
//    if (nCross % 2 == 0) {
//        log("在多边形外");
//    }
    return (nCross % 2 == 1);
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值