论文解读:MOEA/D-TPN

An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts

Motivation

(1) MOEA/D是解决MOPs的有效方法,但面对具有复杂POF(如:long tail, sharp peak和 disconnected regions)的MOPs时,其性能会严重下滑。主要表现在以下两个方面:

  • 凸POF情况下,均匀分布的权向量不能为MOPs带来良好的分布解。
    由于尖峰和长尾的存在,一个目标很小的变化将会导致另外一个目标的巨大差距。因此,MOEA/D会在POF的中间地带密集搜索。尽管算法提供了一组均匀的权重向量,但依然很难在POF的边缘和极端区域找到分布良好的解。

  • 重复产生相似的解,造成资源浪费。
    这是由于MOEA/D将meting限制在邻域中而导致的。尤其当POF不连续时,情况更加糟糕。

(2) 相反,在凹POF情况下,MOEA/D没有这样的缺点。

  • 如果中间区域的解比极端区域的解更密集,说明MOP可能是凸的,在余下的优化阶段采用反标量子问题形式更合适。因此,可以很自然地通过求反式切比雪夫标量函数来获得凸POF上的一组均匀的解

(3) 为了解决复杂POF所带来的困境,最近几年,研究者们提出了各种各样的改进策略来提高原始MOEA/D算法的性能。例如:

  • MOEA/D-NBI (2010)
    提出了标准边界交叉型的Tchebycheff方法来克服目对标尺度的敏感性,期望以此获得分布良好的近似POF。虽然它在双目标问题上工作得很好,但这种方法不容易推广到高维问题。
  • UMOEA/D (2013)
    当算法判断到POF的几何形状小于单位超平面 Σ i = 1 M f i = 1 \Sigma_{i=1}^M f_i=1 Σi=1Mfi=1时,采用自适应转换策略使转换后的POF尽可能地靠近该超平面。然而,如果在识别POF形状中所用的近似POF存在噪声,那么该方法将会失败。
  • MOEA/D-AWA (2014)
    AWA的基本思想是采用两阶段策略来处理权向量生成。具体来说,第一阶段使用一组预定义的(经过WS-transformation变化的)权重向量直到种群达到一定程度的收敛;第二阶段是权重向量自适应调整阶段。即首先删除拥挤度较高的权向量,然后根据当前Pareto最优解(elite population)将新权向量加入到真实的稀疏区域中而不是伪稀疏区域(不连续部分)。
    值得一提的是,新的权值向量初始化方法可以显著提高MOEA/D在具有简单PFs的三目标MOPs上的性能。而对于具有不连续POF的MOPs,AWA策略可以帮助MOEA/D识别复杂POF的不连续部分,并减少对区域的计算量。进一步地,可以发现,AWA策略可以为MOEA/D带来更好的均匀性,尤其在POF的sharp peak和long tail部分。

Innovation

针对处理复杂POF的MOPs时MOEA/D算法所面临的一些困难,本文通过提出两种策略对MOEA/D框架进行了扩展。不同于其他算法,本文利用两阶段(TP)方法将整个演化过程分为两个阶段。首先,基于对POF几何特性的分析,提出了基于Crowding的POF凹凸性的判断方法,并根据POF不同位置上的凹凸性,选择适当形式的Tchebycheff方法来解决标量优化子问题。然后,利用基于共享的小生境方法通过对mating/update range的选择实现了计算资源的合理配置。

Contribution

(1) 通过设计POF凹凸性判断指标,实现了在凹凸性未知的情况下动态地选择合适的子问题形式。
(2) 基于niche-guided的方案为进化过程中复杂的测试问题提供了更高的种群多样性,特别是在POF不连续的情况下。
(3) 基于TP的MOEA/D算法在处理具有sharp peak和long tail POF的MOPs时的性能有了显著提升。同时,TP可以调整搜索方向,从而使个体多样化,这对于处理POF不连续的MOPs是非常有效的。
(4) 不同于传统的基于分解的优化思想,MOEA/D-TPN并不局限于提升权重向量分布的均匀性。针对权重向量与解分布不一致的情况,本文提出一种改进的分解方法提高了MOEA/D对于带有复杂POF的MOPs的优化能力。

Key techniques

  • 如何将进化过程划分为两阶段(TP);
  • 如何在算法中适当的位置应用小生境方法;
  • 设计一种POF凹凸性评价指标;
  • 重新选择mating/update范围;
  • 反式Tchebycheff方法的构造。

MOEA/D-TPN

完整的算法流程如下,其中关键部分已做了标注:
在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
moea/d-m2m是一个多目标优化算法的matlab实现代码。M2M代表的是基于分解的多目标优化方法,这种方法将多目标优化问题转化为一系列的单目标优化子问题。下面是关于moea/d-m2m代码的简要介绍。 首先,我们需要下载moea/d-m2m代码并在matlab中加载它。加载之后,我们可以使用下面的步骤来使用该代码解决多目标优化问题: 1. 定义目标函数:需要根据具体的问题定义目标函数。多目标优化通常有多个目标函数,我们需要将这些目标函数定义为适当的matlab函数。 2. 设置优化问题参数:通过设置一些必要的参数来控制优化问题的求解。这些参数包括种群大小、迭代次数、交叉概率、变异概率等等。可以根据具体问题进行调整。 3. 编写适应度函数:适应度函数用于评估每个个体的适应度值。在moea/d-m2m中,适应度函数是由目标函数计算得到的。 4. 运行优化算法:使用moea/d-m2m中的函数来运行优化算法。该算法将在多次迭代中不断更新种群,并逐步逼近问题的 Pareto 最优解集。 5. 获取最优解:最终,我们可以从算法的输出中获取 Pareto 最优解集。这些解集通常以一种图形表示方式呈现,帮助我们了解问题的不同权衡解。 需要注意的是,moea/d-m2m提供了丰富的函数和工具,可以通过调用这些函数来完成目标函数的计算、种群的更新、个体的选择等等。用户可以根据自己的需求对代码进行修改和调整。 总的来说,moea/d-m2m是一个用于解决多目标优化问题的matlab代码,通过定义目标函数、设置参数、编写适应度函数、运行优化算法等步骤,可以使用该代码来求解具体问题的 Pareto 最优解集。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值