SAP选择屏幕设置变式实现动态日期

本文分享了在SAP系统中设置动态日期变式的方法,包括编写程序、选择和设置动态日期属性,以及如何提取特定时间段内的业务数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        ​很多小伙伴来咨询选择屏幕动态日期变式如何设置的问题,小菜在刚做顾问的时候也觉得很棘手,特地请教了很多大神,最后总结成了一份文档,今天把方法分享给大家拉~

 

首先我们编写一个简单的程序,只有选择界面,”gui title”设置为当前日期,以便完成后查看效果。

接着我们运行该程序,在选择界面上点击”保存“,就进入到保存变式的画面拉。

 

输入变式名称、描述,点开设置动态日期属性一行的“选择变量”右侧的“F4”,在弹出窗口上选择”变量类型”为”X”的动态日期计算。

 

设置完计算方法后,再点开“变量名称(F4)”。

 

小伙伴们肯定还要问了,假设我们当前的需求是“提取业务数据发生在两天前到现在的数据”,那又该如何设置呢?别担心,小菜也帮大家整理好啦~

 

首先我们双击“当前日期 +/- ???天”,在弹出窗口中输入“-2”并打“√”。

 

这样就完成动态前两天的变式设置拉。

 

接着我们保存变式,然后测试效果。只要输入日期,就可以轻松提取出提取业务数据发生在两天前到现在的数据拉。是不是很方便呢?

 

 

今天的经验分享就到这里拉,小伙伴们学会了吗?赶快打开SAP试试看吧。觉得有用的小伙伴,还请多转发留言鼓励小菜哦。

                                                                                       -END-

 

 

更多经验请关注公众号“菜鸟之家”,每周分享顾问经验,绝对干货满满!

图文来源:Goldan、Lisa

图文编辑:Yannick

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值