必读的100篇生成式AI论文清单

2024年真是生成式人工智能研究大放异彩的一年!最让我们惊讶的是,整个领域的焦点发生了翻天覆地的变化。尤其是在 2023 年和 2024 年,情况开始变得截然不同,由于大模型模型已经能够做很多事情,因此也更加关注应用层面的研究。

论文集合地址:https://github.com/aishwaryanr/awesome-generative-ai-guide


论文合集的分类框架如上图所示,把AI研究想象成一个从输入到输出的系统,就像实际部署的场景一样。这个框架分为几层,每层都有其独特的关注点:

输入层:
这是大模型应用的起点,聚焦于输入处理和提示工程的研究。通过巧妙调整输入数据的方式,我们可以让大型语言模型(LLM)输出更优质的结果。

数据/模型层:
这一层关注的是模型的“燃料”和“引擎”。研究内容包括提升数据质量、生成合成数据,确保模型在丰富多样的数据集上训练。此外,还有基础架构的创新,比如新模型架构、多模态能力(融合文本、图像等)、成本与尺寸优化、模型对齐以及扩展上下文长度等。

应用层:
研究如何将LLM应用于现实世界。无论是特定领域的模型(如代码生成、文本转SQL或医疗应用),还是微调、检索增强生成(RAG)和多智能体系统等技术,这一层都是将理论转化为实用工具的关键。

输出层:
如何确保模型的输出靠谱?这一层的研究集中在评估方法上,从人机交互系统到基准测试和LLM评委,提供了多种有效评估AI输出的手段。

挑战:
生成式AI的局限性:对抗性攻击、模型可解释性、幻觉问题等,这些都是我们需要克服的现实挑战,以确保AI更安全、更可靠。

输入层

提示工程

数据模型层

1. 数据质量/合成数据生成
2. 新基座大模型
3. 模型优化 (大小, 成本)
4. 多模态
5. 大模型对齐
6. 长上下文

应用层

1.领域模型
2. RAG
3. 智能体
4. 多智能体
5. 大模型微调

输出层

大模型评估


挑战

生成式AI的局限性

添加微信1185918903,关注公众号ChallengeHub获取更所咨询

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值