事件抽取-事件类型抽取以及元素抽取一览表

         事件抽取任务主要包括三个任务:1.实体识别   2.事件检测  3.事件角色填充。本人主要找了一些ACL顶级会议的篇章级事件抽取,有触发词和无触发词的事件检测,以及事件论元抽取。

论文标题模型简称会议发表时间摘要备注代码链接
Joint Event and Temporal Relation Extraction with Shared Representations and Structured Prediction EMNLP2019 事件的时序性 
Document-Level Event Role Filler Extraction using Multi-Granularity Contextualized Encoding ACL2020论文提出一种无触发词的篇章级事件抽取,涉及篇章级事件事件抽取为事件角色抽取,从而转化为序列标注模型,论文提出多种粒度篇章全局编码,融合句子编码和段落编码方式,提升效果显著。融合多种粒度文章级别的事件抽取https://github.com/xinyadu/doc_event_role
Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event ExtractionDOC2EDAGEMNLP2019论文提出一种无触发词的篇章级事件抽取,论文设计了三个transformer,transformer-1+crf实体识别,max-pooling获取实体和句子嵌入, transformer-2编码所有实体和句子之间的特征。max-pooling在所有句子嵌入中获取文章嵌入,采用分类层获取事件类型。以事件类行为开头,预先构造事件角色表,为每个事件角色分配实体和NA实体。为了屏蔽已经分配的实体,设计了m tensor,已分配的角色实体加入m tensor中,采用tansformer-3编码获取实体是否当前角色。 https://github.com/dolphin-zs/Doc2EDAG
Joint Event Extraction via Recurrent Neural NetworksJRNNNAACL2016   
Jointly Extracting Event Triggers and Arguments by Dependency-Bridge RNN and Tensor-Based Argument InteractionDBRNNAAAI2018   
Event Extraction via Dynamic Multi-Pooling Convolutional Neural networksDMCNNACL2015论文将事件抽取任务分为两个阶段的多分类任务。第一个阶段是触发词分类,利用DMCNN模型对句子中的每个单词进行识别,判断是否为触发词。如果一个句子中包含了触发词,那么开始执行第二个阶段;第二个阶段是论元分类,这里使用了相似的DMCNN模型,对句字中除了触发词以外的所有实体论元进行判别,识别出与该触发词存在关系的论元以及该论元所扮演的论元角色。论文中DMCNN引入多种特征,词向量特征,位置特征,事件类型特征;另外论文设计了一个动态多池化层。因为在事件抽取任务中,一个句子可能包含多个事件,并且一个候选论元相对于不同触发词可能扮演不同的角色。因此在论元分类任务中,我们将卷积得到的特征图分为三个部分,按照触发词、候选论元所在的位置进行切分。之后使用每个部分的特征最大值作为最终提取的特征。  
Event Detection with Trigger-Aware Lattice Neural NetworkTLNNEMNLP2019论文主要是做事件检测,即事件触发词识别以及分类,将事件检测设计为序列标注问题,论文为了解决预处理阶段分词错误导致触发词识别错误和触发词多义性导致触发词识别错误,论文提出动态融合词和字信息,构造了类似于实体识别lattice-lstm网络结构,并且引入外部知识hownet增强对多义触发词的理解,lstm编码句子中的K个意思集成到lstm细胞状态中,从而获取包含多种外部知识的字符表示。 https://github.com/thunlp/TLNN
Event Detection with Multi-Order Graph Convolution and Aggregated Attention EMNLP2019论文主要是做事件检测,也是将事件检测设计为序列标注问题,作者认为触发词与论元在句法解析树中需要获取多级连接才能获取关系,采用多阶GAT网络来学习句法特征。  
Event Detection without Triggers NACCL2019论文提出了无触发词识别事件检测,将事件检测转化为多标签分类,每个输入样例转化为<s,t>,论文融合全局和局部特征,首先采用lstm编码,再分别计算局部特征和event type的attention,和全局特征与event type的attention。融合这两种特征输出模型的预测结果。 https://github.com/liushulinle/event detection without
triggers
HMEAE: Hierarchical Modular Event Argument ExtractionHMEAEACL2019论文提出了HMEAE模型,用于处理EAE(事件元素抽取)问题(面向的是argument roles的分类问题)。采用灵活的模块网络(modular networks),利用了元素角色(argument roles)相关的层次概念。这篇文章的亮点在于使用到了概念层次的信息,有助于EAE中的argument roles分类问题。模型在建模的过程中以一个实例作为对象,也就是一个句子。先使用CNN或BERT将句子建模成隐层嵌入序列;然后根据触发词和候选元素(句中实体)的位置,使用dynamic multi-pooling进行了特征的聚合,得到了实例的嵌入。接着,在上级概念模块(SCM)中使用注意力机制,给每个隐层嵌入分配一个注意力分值,表示该隐层嵌入和该上级概念的关联性程度。然后给定角色,对隐层在不同上级概念中的注意力分值求平均,得到每个token ii针对该角色的注意力分值。再使用这个注意力分值作为权重,对所有的隐层嵌入进行加权求和,得到输入实例(句子)的面向角色的嵌入。最后,将实例的嵌入和实例的面向角色的嵌入拼接起来作为分类器的输入,和元素角色的嵌入相乘,再经过一层softmax,为输入的实例xx预测角色rr。 https://github.com/thunlp/HMEAE
DCFEE: A Document-level Chinese Financial Event Extraction System
based on Automatically Labeled Training Data
DCFEEACL2018论文提出了篇章级事件抽取,先通过BiLSTM+CRF进行句子级事件抽取,抽取出句子中的候选论元及触发词。关键句事件检测通过拼接句子级事件抽取输出的事件论元和事件触发器的表示,和当前句子的向量表示,采用CNN编码,来判定关键句事件与否。另外使用论元填充策略,该策略可以自动地从周围句子中填充缺失的事件论元。  
基于联合标注和全局推理的篇章级事件抽取 中文信息报2019论文提出基于自注意力机制的实体和事件序列标注模型识别实体和候选论元,采用多层感知机学习实体,实体类别,触发词,触发词类别,文本表示,位置特征,分类所有的角色类型。最后篇章级全局推理方式获取篇章级的事件,方法是结合事件描述和事件结构信息采用向量和tf-idf判定是否为同一事件。  
Entity, Relation, and Event Extraction
with Contextualized Span Representations
 EMNLP2019  https://github.com/dwadden/dygiepp
A Two-Step Approach for Implicit Event Argument Detection ACL2020论文为了解决隐藏论元角色抽取任务,提取两个步骤,首先检测论元实体的头词,然后对头词进行扩展。分别计算头词和谓词(触发词)进行扩展,然后他们之间概率值进行分类,然后对实体的头词分别从左或者从右进行扩展。 https://github.com/zzsfornlp/zmsp

 

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页