机器学习-isomap降维算法

ISOMAP是一种流形学习方法,适用于非线性数据的降维。它通过构建连通图并寻找最短路径来近似测地线距离,从而更好地保留数据的局部结构。对比PCA和MDS,ISOMAP在处理嵌入流形的数据时表现出色。通过降维示例,如人脸照片和MINIST手写数字,展示了ISOMAP在识别关键特征和保持数据相似性方面的优势。
摘要由CSDN通过智能技术生成

ISOMAP(等距特征映射)

流形学习:传统的机器学习方法中,数据点和数据点之间的距离和映射函数都是定义在欧式空间中的,然而在实际情况中,这些数据点可能不是分布在欧式空间中的,因此传统欧式空间的度量难以用于真实世界的非线性数据,从而需要对数据的分布引入新的假设。流形学习假设所处理的数据点分布在嵌入于外维欧式空间的一个潜在的流形体上,或者说这些数据点可以构成这样一个潜在的流形体。

图1 一个嵌在三维空间的流行体

图1就是一个数据嵌入在流行体的例子,传统的例如PCA和MDS降维方法效果就不是十分理想。此流行体实际上是一个二维分布的平面,在三维空间中流行体上点与点之间的距离不能使用传统的欧式空间的距离来计算,而应该用测地线距离代表这两个点的实际距离。

图2 测地线和欧式距离

图2中蓝色虚线为两个点的欧式距离,蓝色实线为两个点的测地线距离。但是测地线距离也不好测量,因此我们采用另一种路径近似代表测地线距离。

图3 图中两点的最短路径

我们构建一个连通图,其中每个点只和距离这个点最近的k个点直接连接&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值