大模型量化、裁剪、蒸馏技术解析

目录

(一)量化

(二)量化工具

(三)裁剪

(四)裁剪工具

(五)蒸馏

(六)蒸馏工具

(七)总结

(八)DeepSeek的核心能力

1. 模型架构与训练优化

2. 自然语言处理能力

3. 编程与代码相关

4. 多模态绘图

5. 模型推理与优化

6. 自动化与智能化


大模型的量化、裁剪和蒸馏是三种常用的模型优化技术,它们各自有不同的原理和应用场景:

(一)量化

  • 概念:模型量化是通过降低模型参数的数值精度减少模型的存储空间和计算资源需求。例如,将32位浮点数权重转换为16位或8位整数权重。

  • 主要方法

    • 训练后量化(Post-training Quantization):模型训练完成后,直接转换数值精度,简单快速,但精度可能下降。

    • 量化感知训练(Quantization-aware Training):在训练过程中模拟量化效果,让模型提前适应低精度,精度损失更小。

    • 动态量化(Dynamic Quantization):在推理过程中动态地对模型参数进行量化,可以进一步提高模型的运行效率。

  • 优缺点:能够显著减少模型的存储需求和计算复杂度,提高模型的运行速度,但可能会在一定程度上牺牲模型的精度。

(二)量化工具

  • 伶荔 (Linly):提供了可用于 CUDA 和 CPU 的量化推理框架,并支持 Huggingface 格式,降低了部署难度,方便用户在不同环境下使用。

  • DeepSeek:通过 DeepSeek API,可以实现模型的量化优化,提升模型的运行效率。

  • Ollama:支持在本地运行各类开源大模型,并可以进行量化设置,以适应不同硬件资源。

(三)裁剪

  • 概念:模型裁剪是通过去除模型中不重要权重神经元减少模型的复杂度。通常涉及对模型参数进行评分,然后去除那些评分较低的参数。

  • 主要方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冷小鱼

多谢鼓励,我会写更多的原创。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值