混要矩阵(Confusion Matrix),精度(accuracy),准确率(Precision),召回率(recall),ROC与AUC在分类评价中的运用

混要矩阵、精度、准确率、召回率是评估分类模型的重要指标,尤其在不平衡数据集中。精度易受数据分布影响,而混淆矩阵能详细展示模型预测效果。准确率(precision)关注预测正例中的真正例,召回率(recall)关注正类被正确预测的比例。两者之间通常需要权衡。ROC曲线和AUC值则综合评价模型性能,AUC越接近1表示模型越好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于大部分二分类问题,尤其是不平衡数据集(即一个类别出现的次数比另一个类别多很多),通常用的分类评估方法精度指标accuracy并不能很好的反映模型的好坏。

举一个极端的例子,如果1组数据有100个样本,其中99个为正类,1个为负类。如果提供一个模型永远只预测样本为正类,那么这个模型也能有99%的精度。但实际上找个模型其实是很很傻的,什么也没学到,只是因为数据集的不平衡是的模型看上去很好,却永远也无法对负类做出预测。

为了更好的评估负类模型,通测使用混淆矩阵(confusion matrix),为数据的分类任务产生TN,FP,FN和TP四个象限的矩阵,TN为真反例,FP为假正例,FN为假反例,TP为真正例:
真实值是positive,模型认为是positive的数量(True Positive=TP)
真实值是positive,模型认为是negative的数量(False Negative=FN):这就是统计学上的第一类错误(Type I Error)
真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第二类错误(Type II Error)
真实值是negative,模型认为是negative的数量(True Negative=TN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值